RESUMEN
Three simple dipodal artificial acyclic symmetric receptors, SDO, SDM, and SDP, driven by positional isomerism based on xylelene scaffolds were designed, synthesized, and characterized by 1H NMR, 13C NMR, and mass spectroscopy techniques. Probes SDO, SDM, and SDP demonstrated selective detection of Ag+ metal ions and amino acid l-histidine in a DMSO-H2O solution (1:1 v/v, HEPES 50 mM, pH = 7.4). The detection of Ag+ metal ions occurred in three ways: (i) inhibition of the photoinduced electron-transfer (PET) process, (ii) blueshifted fluorescence enhancement via the intramolecular charge-transfer (ICT) process, and (iii) restricted rotation of the dangling benzylic scaffold following coordination with a Ag+ metal ion. Job's plot analysis and quantum yields confirm the binding of probes to Ag+ in 1:1, 1:2, and 1:2 ratios with LODs and LOQs found to be 1.3 µM and 3.19 × 10-7 M, 6.40 × 10-7 and 2.44 × 10 -6 M, and 9.76 × 10-7 and 21.01 × 10-7 M, respectively. 1H NMR titration, HRMS, ESI-TOF, IR analysis, and theoretical DFT investigations were also used to establish the binding stoichiometry. Furthermore, the probes were utilized for the detection of Ag+ ions in water samples, food samples, soil analysis, and bacterial imaging in Escherichia coli cells and a molecular logic gate was constructed.
Asunto(s)
Colorantes Fluorescentes , Plata , Plata/análisis , Colorantes Fluorescentes/química , Isomerismo , Histidina , Espectrometría de Fluorescencia/métodos , Iones/químicaRESUMEN
A simple S-S (disulfide)-bridged dimeric Schiff base probe, L, has been designed, synthesized, and successfully characterized for the specific recognition of Al3+ and Fe2+ ions as fluorometric and colorimetric "turn-on" responses in a dimethylformamide (DMF)-H2O solvent mixture, respectively. The probe L and each metal ion bind through a 1:1 complex stoichiometry, and the plausible sensing mechanism is proposed based on the inhibition of the photoinduced electron transfer process (PET). The reversible chemosensor L showed high sensitivity toward Al3+ and Fe2+ ions, which was analyzed by fluorescence and UV-vis spectroscopy techniques up to nanomolar detection limits, 38.26 × 10-9 and 17.54 × 10-9 M, respectively. These experimental details were advocated by density functional theory (DFT) calculations. The practical utility of the chemosensor L was further demonstrated in electrochemical sensing, in vitro antimicrobial activity, molecular logic gate function, and quantification of the trace amount of Al3+ and Fe2+ ions in real water samples.