Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38130093

RESUMEN

Computational finite element (FE) models are used in suited astronaut injury risk assessments; however, these models' verification, validation, and credibility (VV&C) procedures for simulating injuries in altered gravity environments are limited. Our study conducts VV&C assessments of THUMS and Elemance whole-body FE models for predicting suited astronaut injury biomechanics using eight credibility factors, as per NASA-STD-7009A. Credibility factor ordinal scores are assigned by reviewing existing documentation describing VV&C practices, and credibility sufficiency thresholds are assigned based on input from subject matter experts. Our results show the FE models are credible for suited astronaut injury investigation in specific ranges of kinematic and kinetic conditions correlating to highway and contact sports events. Nevertheless, these models are deficient when applied outside these ranges. Several credibility elevation strategies are prescribed to improve models' credibility for the NASA-centric application domain.

2.
Mol Biotechnol ; 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016179

RESUMEN

Damage induced by transient disruption and mechanoporation in an intact cell membrane is a vital nanoscale biomechanical mechanism that critically affects cell viability. To complement experimental studies of mechanical membrane damage and disruption, molecular dynamics (MD) simulations have been performed at different force field resolutions, each of which follows different parameterization strategies and thus may influence the properties and dynamics of membrane systems. Therefore, the current study performed tensile deformation MD simulations of bilayer membranes using all-atom (AA), united-atom (UA), and coarse-grained Martini (CG-M) models to investigate how the damage biomechanics differs across atomistic and coarse-grained (CG) simulations. The mechanical response and mechanoporation damage were qualitatively similar but quantitatively different in the three models, including some progressive changes based on the coarse-graining level. The membranes yielded and reached ultimate strength at similar strains; however, the coarser systems exhibited lower average yield stresses and failure strains. The average failure strain in the UA model was approximately 7% lower than the AA, and the CG-M was 20% lower than UA and 27% lower than AA. The CG systems also nucleated a higher number of pores and larger pores, which resulted in higher damage during the deformation process. Overall, the study provides insight on the impact of force field-a critical factor in modeling biomolecular systems and their interactions-in inspecting membrane mechanosensitive responses and serves as a reference for justifying the appropriate force field for future studies of more complex membranes and more diverse biomolecular assemblies.

3.
Animal Model Exp Med ; 4(2): 77-86, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34179716

RESUMEN

Occupational exposure to whole-body vibration is associated with the development of musculoskeletal, neurological, and other ailments. Low back pain and other spine disorders are prevalent among those exposed to whole-body vibration in occupational and military settings. Although standards for limiting exposure to whole-body vibration have been in place for decades, there is a lack of understanding of whole-body vibration-associated risks among safety and healthcare professionals. Consequently, disorders associated with whole-body vibration exposure remain prevalent in the workforce and military. The relationship between whole-body vibration and low back pain in humans has been established largely through cohort studies, for which vibration inputs that lead to symptoms are rarely, if ever, quantified. This gap in knowledge highlights the need for the development of relevant in vivo, ex vivo, and in vitro models to study such pathologies. The parameters of vibrational stimuli (eg, frequency and direction) play critical roles in such pathologies, but the specific cause-and-effect relationships between whole-body vibration and spinal pathologies remain mostly unknown. This paper provides a summary of whole-body vibration parameters; reviews in vivo, ex vivo, and in vitro models for spinal pathologies resulting from whole-body vibration; and offers suggestions to address the gaps in translating injury biomechanics data to inform clinical practice.


Asunto(s)
Dolor de la Región Lumbar , Exposición Profesional , Enfermedades de la Columna Vertebral , Humanos , Dolor de la Región Lumbar/etiología , Exposición Profesional/efectos adversos , Columna Vertebral , Vibración/efectos adversos
4.
Artículo en Inglés | MEDLINE | ID: mdl-32438649

RESUMEN

Wearable sensors are beneficial for continuous health monitoring, movement analysis, rehabilitation, evaluation of human performance, and for fall detection. Wearable stretch sensors are increasingly being used for human movement monitoring. Additionally, falls are one of the leading causes of both fatal and nonfatal injuries in the workplace. The use of wearable technology in the workplace could be a successful solution for human movement monitoring and fall detection, especially for high fall-risk occupations. This paper provides an in-depth review of different wearable stretch sensors and summarizes the need for wearable technology in the field of ergonomics and the current wearable devices used for fall detection. Additionally, the paper proposes the use of soft-robotic-stretch (SRS) sensors for human movement monitoring and fall detection. This paper also recapitulates the findings of a series of five published manuscripts from ongoing research that are published as Parts I to V of "Closing the Wearable Gap" journal articles that discuss the design and development of a foot and ankle wearable device using SRS sensors that can be used for fall detection. The use of SRS sensors in fall detection, its current limitations, and challenges for adoption in human factors and ergonomics are also discussed.


Asunto(s)
Accidentes por Caídas , Dispositivos Electrónicos Vestibles , Lugar de Trabajo , Accidentes por Caídas/prevención & control , Ergonomía , Humanos , Movimiento
6.
Bioengineering (Basel) ; 6(2)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067801

RESUMEN

Designing protective systems for the human head-and, hence, the brain-requires understanding the brain's microstructural response to mechanical insults. We present the behavior of wet and dry porcine brain undergoing quasi-static and high strain rate mechanical deformations to unravel the effect of hydration on the brain's biomechanics. Here, native 'wet' brain samples contained ~80% (mass/mass) water content and 'dry' brain samples contained ~0% (mass/mass) water content. First, the wet brain incurred a large initial peak stress that was not exhibited by the dry brain. Second, stress levels for the dry brain were greater than the wet brain. Third, the dry brain stress-strain behavior was characteristic of ductile materials with a yield point and work hardening; however, the wet brain showed a typical concave inflection that is often manifested by polymers. Finally, finite element analysis (FEA) of the brain's high strain rate response for samples with various proportions of water and dry brain showed that water played a major role in the initial hardening trend. Therefore, hydration level plays a key role in brain tissue micromechanics, and the incorporation of this hydration effect on the brain's mechanical response in simulated injury scenarios or virtual human-centric protective headgear design is essential.

7.
Forensic Sci Int ; 300: 170-186, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31125762

RESUMEN

Head injury in childhood is the most common cause of death or permanent disability from injury. However, insufficient understanding exists of the response of a child's head to injurious loading scenarios to establish cause and effect relationships to assist forensic and safetly investigations. Largely as a result of a lack of availability of paediatric clinical and Post-Mortem-Human-Surrogate (PMHS) experimental data, a new approach to infant head injury experimentation has been developed. A coupled-methodology, combining a physical infant head surrogate, producing "real world" global, regional and localised impact response data and a computational Finite-Element (FE-head) model was created and validated against available PMHS and physical model global impact response data. Experimental impact simulations were performed to investigate regional and localised injury vulnerability. Different regions of the head produced accelerations significantly greater than those calculated using the currently available method of measuring the global, whole head response. The majority of material strain was produced within the relatively elastic suture and fontanelle regions, rather than the skull bones. A subsequent parametric analysis was conducted to provide a correlation between fall height and areas of maximum-stress-response and fracture-risk-probability. The FE-head was further applied to investigating fracture risk, simulating injurious PMHS impacts and a good qualitative match was observed. The FE-head shows significant potential for the study of infant head injury and is anticipated to be a motivating tool for the improvement of head injury understanding across a range of potentially injurious head loading scenarios.


Asunto(s)
Accidentes por Caídas , Simulación por Computador , Traumatismos Craneocerebrales/fisiopatología , Análisis de Elementos Finitos , Fenómenos Biomecánicos/fisiología , Cadáver , Diseño Asistido por Computadora , Módulo de Elasticidad/fisiología , Medicina Legal/métodos , Humanos , Imagenología Tridimensional , Lactante , Impresión Tridimensional , Fracturas Craneales/fisiopatología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...