Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1863(2): 183526, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278347

RESUMEN

FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, saturation, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length influences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteínas Bacterianas/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Pliegue de Proteína , Aquifex/enzimología , Aquifex/genética , Proteínas Bacterianas/genética
2.
J Biol Chem ; 296: 100029, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33154162

RESUMEN

AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore toward a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains. In this work, we used both negative stain TEM and cryo-EM to determine 3D maps of the full-length Aquifex aeolicus FtsH protease. Unexpectedly, we observed that detergent solubilization induces the formation of fully active FtsH dodecamers, which consist of two FtsH hexamers in a single detergent micelle. The striking tilted conformation of the cytosolic domain in the FtsH dodecamer visualized by negative stain TEM suggests a lateral substrate entrance between the membrane and cytosolic domain. Such a substrate path was then resolved in the cryo-EM structure of the FtsH hexamer. By mapping the available structural information and structure predictions for the transmembrane helices to the amino acid sequence we identified a linker of ∼20 residues between the second transmembrane helix and the cytosolic domain. This unique polypeptide appears to be highly flexible and turned out to be essential for proper functioning of FtsH as its deletion fully eliminated the proteolytic activity of FtsH.


Asunto(s)
Citoplasma/metabolismo , Metaloendopeptidasas/metabolismo , Aquifex/enzimología , Cromatografía en Gel , Biología Computacional/métodos , Microscopía por Crioelectrón , Hidrólisis , Metaloendopeptidasas/química , Metaloendopeptidasas/aislamiento & purificación , Conformación Proteica , Transporte de Proteínas , Especificidad por Sustrato
3.
Curr Top Microbiol Immunol ; 404: 45-67, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27154227

RESUMEN

The Sec system is present in all bacteria and responsible for the translocation of the majority of proteins across the cytoplasmic membrane. The system consists of two principal components: the ATPase motor protein, SecA, and the protein-conducting channel, SecYEG. In addition to this canonical Sec system, several Gram-positive bacteria also possess a so-called accessory Sec system. This is a specialized translocation system that is responsible for the export of a subset of secretory proteins, including virulence factors. The accessory Sec system consists of a second SecA paralog, termed SecA2, with or without a second SecY paralog, termed SecY2. In some bacteria, the accessory Sec system is dependent on the canonical Sec system for functionality, while in other bacteria, they can function independently. In this review, we provide an overview of the current knowledge of the canonical and accessory Sec system of Gram-positive bacteria with a focus on the primary component of the Sec translocase, SecA and SecYEG.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/fisiología , Bacterias Grampositivas/metabolismo , Canales de Translocación SEC/fisiología , Proteínas Bacterianas/fisiología , Transporte de Proteínas , Proteína SecA
4.
Biochim Biophys Acta ; 1848(10 Pt A): 2050-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26129641

RESUMEN

The bacterial Sec translocase in its minimal form consists of a membrane-embedded protein-conducting pore SecYEG that interacts with the motor protein SecA to mediate the translocation of secretory proteins. In addition, the SecYEG translocon interacts with the accessory SecDFyajC membrane complex and the membrane protein insertase YidC. To examine the composition of the native lipid environment in the vicinity of the SecYEG complex and its impact on translocation activity, styrene-maleic acid lipid particles (SMALPs) were used to extract SecYEG with its lipid environment directly from native Escherichia coli membranes without the use of detergents. This allowed the co-extraction of SecYEG in complex with SecA, but not with SecDFyajC or YidC. Lipid analysis of the SecYEG-SMALPs revealed an enrichment of negatively charged lipids in the vicinity of SecYEG, which in detergent assisted reconstitution of the Sec translocase are crucial for the translocation activity. Such lipid enrichment was not found with separately extracted SecDFyajC or YidC, which demonstrates a specific interaction between SecYEG and negatively charged lipids.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Membrana Dobles de Lípidos/química , Proteínas de Transporte de Membrana/química , Proteolípidos/química , Adenosina Trifosfatasas/ultraestructura , Proteínas Bacterianas/ultraestructura , Activación Enzimática , Maleatos/química , Proteínas de Transporte de Membrana/ultraestructura , Canales de Translocación SEC , Proteína SecA , Electricidad Estática , Estireno/química
5.
PLoS One ; 10(6): e0128788, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047312

RESUMEN

The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Factores de Virulencia/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Esenciales , Proteínas de Transporte de Membrana/genética , Mutación , Mycobacterium tuberculosis/genética , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluciones , Factores de Virulencia/genética
6.
FEBS Lett ; 587(18): 3083-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23954289

RESUMEN

SecYEG functions as a membrane channel for protein export. SecY constitutes the protein-conducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic α-helix via a flexible hinge. These two domains are the major sites of interaction between SecE and SecY. Specific cleavage of SecE at the hinge region, which destroys the interaction between the two SecE domains, reduced translocation. When SecE and SecY were disulfide bonded at the two sites of interaction, protein translocation was not affected. This suggests that the SecY and SecE interactions are static, while the hinge region provides flexibility to allow the SecY pore to open.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Disulfuros/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Methanococcaceae/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...