Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neural Regen Res ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38902281

RESUMEN

ABSTRACT: The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration. Axons and dendrites, sometimes referred to as neurites, are extensions of a neuron's cellular body that are used to start networks. Here we explored the effects of diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate (DDQ) on neurite developmental features in HT22 neuronal cells. In this work, we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22 cells expressing mutant Tau (mTau) cDNA. To investigate DDQ characteristics, cell viability, biochemical, molecular, western blotting, and immunocytochemistry were used. Neurite outgrowth is evaluated through the segmentation and measurement of neural processes. These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth. These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22. DDQ-treated mTau-HT22 cells (HT22 cells transfected with cDNA mutant Tau) were seen to display increased levels of synaptophysin, MAP-2, and ß-tubulin. Additionally, we confirmed and noted reduced levels of both total and p-Tau, as well as elevated levels of microtubule-associated protein 2, ß-tubulin, synaptophysin, vesicular acetylcholine transporter, and the mitochondrial biogenesis protein-peroxisome proliferator-activated receptor-gamma coactivator-1α. In mTau-expressed HT22 neurons, we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth. Our findings conclude that mTau-HT22 (Alzheimer's disease) cells treated with DDQ have functional neurite developmental characteristics. The key finding is that, in mTau-HT22 cells, DDQ preserves neuronal structure and may even enhance nerve development function with mTau inhibition.

2.
Aging Dis ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38739937

RESUMEN

Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aß) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aß and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aß and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aß, p-Tau in cerebrospinal fluid (CSF) and Aß & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38522711

RESUMEN

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Asunto(s)
Bencimidazoles , Carbamatos , Escoliosis , Contaminantes Químicos del Agua , Animales , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Larva , Escoliosis/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Cancer Treat Res Commun ; 39: 100795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38428067

RESUMEN

Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), is an enzyme with tyrosine kinase activity that plays a pivotal role in angiogenesis, the process of new blood vessel formation. This receptor is of significant clinical importance as it is implicated in various cancers, particularly non-small cell lung cancer (NSCLC), where its dysregulation leads to uncontrolled cell growth through ligand-induced phosphorylation. While commercially available drugs target VEGFR1, their prolonged use often leads to drug resistance and the emergence of mutations in cancer patients. To address these challenges, researchers have identified the human tyrosine kinase (hTK) domain of VEGFR1 as a potential therapeutic marker for lung malignancies. The 3D crystal structure of the hTK domain, obtained from Protein Data Bank (PDB ID: 3HNG), has provided vital structural insights of hVEGFR1. This study has revealed variations within the hVEGFR1 tyrosine kinase domain, distinguishing between regions associated with phosphorylase kinase and transferase activities. We identified numerous potential phosphorylation sites within the TK domain, shedding light on the protein's regulation and signaling possible. Detailed molecular interaction analyses have elucidated the binding forces between lead molecules and hVEGFR1, including hydrogen bonds, electrostatic, hydrophobic, and π-sigma interactions. The stability observed during molecular dynamics simulations further underscores the biological relevance of these interactions. Furthermore, docked complexes has highlighted localized structural fluctuations, offering insight into potential allosteric effects and dynamic conformational changes induced by lead molecules. These findings not only provide a comprehensive characterization of hVEGFR1 but also pave the way for the development of targeted therapies. Eventually, this study has the potential in identifying drug to combat diseases associated with hVEGFR1 dysregulation, including cancer and angiogenesis-related disorders, contributing to effective treatment strategies.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Fosforilación , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Reprod Toxicol ; 125: 108555, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342389

RESUMEN

It is well known that the epididymis promotes post-testicular sperm maturation events. However, its malfunction during congenital hypothyroidism is relatively less understood as compared to the testis. The present study evaluated the probable effect of α-lipoic acid on epididymal oxidative stress parameters in rats exposed to antithyroid drug, carbimazole during fetal period. Time-mated pregnant rats in unexposed and carbimazole (1.35 mg/Kg body weight exposed were allowed to deliver pups and weaned. At postnatal day 100, the F1 male pups were assessed for epididymal endpoints. Among the epididymal regions, significant elevation of lipid peroxidation levels, superoxide anion, and hydrogen peroxide contents with a concomitant reduction in the activity levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and reduced glutathione levels were observed in cauda epididymis of carbimazole exposed rats over controls. Significant elevation in sperm DNA fragmentation (comet assay), accelerated cauda epididymal sperm transit time and reduction in epididymal sialic acid content was observed in carbimazole exposed rats. RT-qPCR studies revealed that embryonic exposure to carbimazole resulted in down regulation of androgen receptor, nuclear factor eryrthoid 2 like 2, 5α-reducatse 1 mRNA levels, while up regulation of caspase 3 mRNA was observed in epididymal regions of rats. In addition, fetal exposure to carbimazole resulted in disorganization of cauda epididymal architecture in rats. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight) during PND 3 to 14 restored epididymal functions in carbimazole exposed rats and the ameliorative effects of lipoic acid could be attributed to its antioxidant and steroidogenic effects.


Asunto(s)
Hipotiroidismo , Ácido Tióctico , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/metabolismo , Epidídimo , Carbimazol/metabolismo , Carbimazol/farmacología , Ratas Wistar , Semen/metabolismo , Estrés Oxidativo , Testículo , Espermatozoides , Peroxidación de Lípido , Hipotiroidismo/inducido químicamente , Hipotiroidismo/metabolismo , ARN Mensajero/metabolismo
8.
Mitochondrion ; 75: 101843, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244850

RESUMEN

The purpose of our study is to develop age-related phosphorylated tau (p-tau) inhibitors, for Alzheimer's disease (AD). There are wide-ranging therapeutic molecules available in the market and tested for age-related p-tau inhibition to enhance phosphatase activity and microtubule stability in AD neurons. Until now there are no such small molecules claimed to show promising results to delay the disease process of AD. However, a recently developed molecule, DDQ, has been shown to reduce abnormal protein-protein interactions and protect neurons from mutant protein-induced toxicities in the disease process. In addition, DDQ reduced age- and Aß-induced oxidative stress, mitochondrial dysfunction, and synaptic toxicity. To date, there are no published reports on the p-tau interaction of DDQ and Sirt3 upregulation with CREB-mediated mitophagy activation in AD neurons. In the current study, HT22 cells were transfected with mutant Tau (mTau) cDNA and treated with the novel molecule DDQ. Cell survival, immunoblotting, and immunofluorescence analysis were conducted to assess cell viability and synaptic and mitophagy proteins in treated and untreated cell groups. As expected, we found cell survival was decreased in mTau-HT22 cells when compared with control HT22 cells. However, cell survival was increased in DDQ-treated mTau-HT22 cells when compared with mTau HT22 cells. P-tau and total tau proteins were significantly reduced in DDQ-treated mTau-HT22 cells, and MAP2 levels were increased. Anti-aging proteins like Sirt3, and CREB levels were increased in DDQ-treated HT22 cells and also in mTau-HT22 cells treated DDQ. Mitophagy proteins were decreased in mTau-HT22 cells and these were increased in DDQ-treated mTau-HT22 cells. These observations strongly suggest that DDQ has anti-p-tau and anti-aging properties, via Sirt3 overexpression and increased mitophagy proteins. Our study findings may have implications for healthy aging to the development of p-tau targeted therapeutics in AD and tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Sirtuina 3 , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Mitofagia , Sirtuina 3/metabolismo , Enfermedad de Alzheimer/genética , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo
9.
Cancer Treat Res Commun ; 36: 100732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37379774

RESUMEN

Cissus quadrangularis plant from Vitaceae family, native in India. Many parts of this plant have medicinal values but most precious is stem of this plant. In past years number of studies reported their activities and secondary metabolites in Cissus quadrangularis plant and their pharmacological activities and uses in traditional medicine system. It is reported to possess excellent medicinal properties and potent fracture healing properties, antimicrobial, antiulcer, antioxidative, cholinergic activity and beneficial effect on cardiovascular diseases, possesses antiulcer and cytoprotective property in indomethacin-induced gastric mucosal injury. The aim of this study was to determine the qualitative phytochemical analysis, antimicrobial activity, cell viability and in vitro anticancer activity of a potential of Cissus quadrangularis stem extract against A549 human lung cancer cell line. The disc diffusion method was employed to determine the antimicrobial activity of Cissus quadrangularis stem extract and showed potential antibacterial and antifungal activity against various microorganisms. Results have shown that Stem methanolic extract induced a significant decrease of tumour cell viability. The cell viability assay clearly showed that the cells treated with Cissus quadrangularis methanolic extract has significantly reduced the lung cancer cell viability in a dose dependant manner. The stem methanolic extract was tested for the in vitro antiproliferative potential on A549 human lung cancer cell line using different concentrations, namely 1000, 62.5 and 7.8 µg/ml. We observed the IC50 dose at 65.2 µg/ml concentration. In cell culture A549 cells treated with Cissus quadrangularis stem methanolic extract in 24 h the cells growth is controlled.


Asunto(s)
Cissus , Neoplasias Pulmonares , Humanos , Cissus/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Línea Celular , Antibacterianos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
10.
Ageing Res Rev ; 89: 101994, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385351

RESUMEN

Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.


Asunto(s)
Enfermedades del Sistema Nervioso , Neurotransmisores , Humanos , Neurotransmisores/fisiología , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/terapia , Neuronas Colinérgicas , Fármacos actuantes sobre Aminoácidos Excitadores , Neuronas GABAérgicas , Neuronas Dopaminérgicas
11.
Cells ; 12(12)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371116

RESUMEN

RalBP1 (Rlip) is a stress-activated protein that is believed to play a large role in aging and neurodegenerative diseases such as Alzheimer's disease (AD) and other tauopathies. The purpose of our study was to understand the role of Rlip in mutant Tau-expressed immortalized hippocampal HT22 cells. In the current study, we used mutant Tau (mTau)-expressed HT22 neurons and HT22 cells transfected with Rlip-cDNA and/or silenced RNA, and studied the cell survival, mitochondrial respiration, mitochondrial function, immunoblotting, and immunofluorescence analysis of synaptic and mitophagy proteins and the colocalization of Rlip and mTau proteins. We found Rlip protein levels were reduced in mTau-HT22 cells, Rlip silenced HT22 cells, and mTau + Rlip RNA silenced HT22 cells; on the other hand, increased Rlip levels were observed in Rlip cDNA transfected HT22 cells. We found cell survival was decreased in mTau-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mTau-HT22 cells. A significantly reduced oxygen consumption rate (OCR) was found in mTau-HT22 cells and in RNA-silenced Rlip-HT22 cells, with an even greater reduction in mTau-HT22 + Rlip RNA-silenced HT22 cells. A significantly increased OCR was found in Rlip-overexpressed HT22 cells and in all groups of cells that overexpress Rlip cDNA. Mitochondrial function was defective in mTau-HT22 cells, RNA silenced Rlip in HT22 cells, and was further defective in mTau-HT22 + Rlip RNA-silenced HT22 cells; however, it was rescued in Rlip overexpressed in all groups of HT22 cells. Synaptic and mitophagy proteins were decreased in mTau-HT22 cells, and further reductions were found in RNA-silenced mTau-HT22 cells. However, these were increased in mTau + Rlip-overexpressed HT22 cells. An increased number of mitochondria and decreased mitochondrial length were found in mTau-HT22 cells. These were rescued in Rlip-overexpressed mTau-HT22 cells. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reverses these defects. Overall, our findings revealed that Rlip is a promising new target for aging, AD, and other tauopathies/neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , ADN Complementario/metabolismo , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , ARN/metabolismo , Hipocampo/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166759, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225106

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that affects a large proportion of the aging population. RalBP1 (Rlip) is a stress-activated protein that plays a crucial role in oxidative stress and mitochondrial dysfunction in aging and neurodegenerative diseases but its precise role in the progression of AD is unclear. The purpose of our study is to understand the role of Rlip in the progression and pathogenesis of AD in mutant APP/amyloid beta (Aß)-expressed mouse primary hippocampal (HT22) hippocampal neurons. In the current study, we used HT22 neurons that express mAPP, transfected with Rlip-cDNA and/or RNA silenced, and studied cell survival, mitochondrial respiration, mitochondrial function, immunoblotting & immunofluorescence analysis of synaptic and mitophagy protein's and colocalization of Rlip and mutant APP/Aß proteins and mitochondrial length and number. We also assessed Rlip levels in autopsy brains from AD patients and control subjects. We found cell survival was decreased in mAPP-HT22 cells and RNA-silenced HT22 cells. However, cell survival was increased in Rlip-overexpressed mAPP-HT22 cells. Oxygen consumption rate (OCR) was decreased in mAPP-HT22 cells and RNA-silenced Rlip-HT22 cells. OCR was increased in Rlip-overexpressed in mAPP-HT22 cells. Mitochondrial function was defective in mAPP-HT22 cells and RNA silenced Rlip in HT22 cells, however, it was rescued in Rlip overexpressed mAPP-HT22 cells. Synaptic and mitophagy proteins were decreased in mAPP-HT22 cells, further reducing RNA-silenced Rlip-HT22 cells. However, these were increased in mAPP+Rlip-HT22 cells. Colocalization analysis revealed Rlip is colocalized with mAPP/Aß. An increased number of mitochondria and decreased mitochondrial length were found in mAPP-HT22 cells. These were rescued in Rlip overexpressed mAPP-HT22 cells. Reduced Rlip levels were found in autopsy brains from AD patients. These observations strongly suggest that Rlip deficiency causes oxidative stress/mitochondrial dysfunction and Rlip overexpression reduced these defects.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo , Mitocondrias/metabolismo , ARN/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166738, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37142132

RESUMEN

The steroidogenic acute regulatory (StAR) protein principally mediates steroid hormone biosynthesis by governing the transport of intramitochondrial cholesterol. Neurosteroids progressively decrease during aging, the key risk factor for Alzheimer's disease (AD), which is triggered by brain-region specific accumulation of amyloid beta (Aß) precursor protein (APP), a key pathological factor. We demonstrate that hippocampal neuronal cells overexpressing wild-type (WtAPP) and mutant APP (mAPP) plasmids, conditions mimetic to AD, resulted in decreases in StAR mRNA, free cholesterol, and pregnenolone levels. The magnitude of suppression of the steroidogenic response was more pronounced with mAPP than that of WtAPP. While mAPP-waned assorted anomalies correlate to AD pathology, deterioration of APP/Aß laden StAR expression and neurosteroid biosynthesis was enhanced by retinoid signaling. An abundance of mitochondrially targeted StAR expression partially restored APP/Aß accumulated diverse neurodegenerative vulnerabilities. Immunofluorescence analyses revealed that overexpression of StAR diminishes mAPP provoked Aß aggregation. Co-expression of StAR and mAPP in hippocampal neurons substantially reversed the declines in mAPP mediated cell survival, mitochondrial oxygen consumption rate, and ATP production. Concurrently, induction of mAPP induced Aß loading showed an increase in cholesterol esters, but decrease in free cholesterol, concomitant with pregnenolone biosynthesis, events that were inversely regulated by StAR. Moreover, retinoid signaling was found to augment cholesterol content for facilitating neurosteroid biosynthesis in an AD mimetic condition. These findings provide novel insights into the molecular events by which StAR acts to protect mAPP-induced hippocampal neurotoxicity, mitochondrial dysfunction, and neurosteroidogenesis, and these measures are fundamental for ameliorating and/or delaying dementia in individuals with AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroesteroides , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Colesterol
14.
Neuroscientist ; : 10738584221139761, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597577

RESUMEN

Alzheimer's disease (AD) is characterized by the accumulation of amyloid ß and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.

15.
Curr Protoc ; 3(1): e631, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36648280

RESUMEN

Various laboratories across the world have developed methods to study mitochondrial proteins/markers through extraction of mitochondrial RNA and protein to assess mitophagy/autophagy in Alzheimer's disease and other age-related diseases. Techniques outlined in this article include qRT-PCR, immunoblotting, immunofluorescence, transmission electron microscopy, Seahorse bioanalysis, staining for mitochondrial membrane potential, detection of mitophagy, and mitochondrial functional assays. Most of these techniques have been performed in vitro (in human and mouse neuronal cell lines transfected with mutant amyloid precursor protein or tau protein cDNAs) and in vivo (in brain tissues from different mouse models of Alzheimer's and other neurological diseases). Mitochondrial abnormalities in Alzheimer's disease have taken various forms, including excessive reactive oxygen species production, mitochondrial calcium dyshomeostasis, loss of ATP, defects in mitochondrial dynamics and transport, and mitophagy. Mitochondrial dysfunction is largely involved in aging; age-related diseases such as cancer, diabetes, and obesity; and neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others. The goal of this article is to make protocols/methods available to students, scholars, and researchers of mitochondria in order to facilitate future mitochondrial studies. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Analyzing mitochondrial gene expression in mouse brain tissue and HT22 cells by qRT-PCR Basic Protocol 2: Analyzing protein expression in mouse brain tissue and HT22 cells by immunoblotting Basic Protocol 3: Immunofluorescence staining of cells and tissue sections Basic Protocol 4: Staining for mitochondrial membrane potential Basic Protocol 5: Assessing mitochondrial structure by transmission electron microscopy Basic Protocol 6: Methods for detecting mitophagy Basic Protocol 7: Bioenergetics assay via Seahorse Basic Protocol 8: Assays for mitochondrial function.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mitocondrias , Proteínas tau
16.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614200

RESUMEN

Breast cancer (BC) is primarily triggered by estrogens, especially 17ß-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERß, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Aromatasa/genética , Aromatasa/metabolismo , Estradiol , Neoplasias Mamarias Animales/patología , Ratones Transgénicos , ARN Mensajero/genética
17.
J Proteomics ; 274: 104811, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36592655

RESUMEN

The central goal of this study was to investigate the alterations in transcriptome of testis in F1 generation adult rats exposed to carbimazole prenatally. At post-natal day 100, the testis of rats delivered to carbimazole exposed (time-mated pregnant rats orally administered with carbimazole from gestation day 9 to 21) and control (untreated pregnant rats) groups were subjected to transcriptomic analysis using NGS platform. A total of 187 differentially expressed (up regulated: 49 genes; down regulated: 138) genes were identified in carbimazole exposed rats over controls and the major processes associated with these altered testicular transcripts were examined. Functional clustering analysis suggest that the involvement of identified DEGs were linked to intrinsic and extrinsic apoptotic pathways, mitochondrial solute carriers slc25a members, nuclear receptors/zinc family members, steroidogenic pathway and cholesterol synthesis, and growth factors and protein kinases and thus represent potential mediators of the developmental toxic effects of carbimazole in F1 generation rats. Based on the findings, it can be concluded that prenatal exposure to carbimazole prominently affects expression of multiple transcripts implicating key regulatory events associated with testicular functions, spermatogenesis and steroidogenesis in rats at their adulthood. These results support our earlier findings and hypothesis. This background information obtained at the testicular transcriptome during gestational hypothyroidism might be helpful for future studies and experiments to gain additional in-depth analysis and to develop strategies to protect F1 generation male reproductive health. SIGNIFICANCE: The rationale for the paper described thyroid gland changes in the off springs. Antithyroid drugs are widely used to control thyroid disorders and used to control thyroid hormone levels during surgeries. Carbimazole is one of the antithyroid drugs and is a parent molecule of methimazole. Both the drugs can able to cross placenta. During fetal period, the development of thyroid gland is not completely formed and hence, the fetus entirely depends on the maternal thyroid hormones. Therefore, it is conceivable that the disturbances at the level of maternal thyroid hormones could interfere with the development of vital organs such as testis and glands including thyroid gland (Kala et al., 2012). To address this notion, the present study was designed and executed.


Asunto(s)
Antitiroideos , Carbimazol , Embarazo , Femenino , Ratas , Masculino , Animales , Carbimazol/metabolismo , Carbimazol/farmacología , Antitiroideos/toxicidad , Transcriptoma , Testículo/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología
18.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166596, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36356843

RESUMEN

Retinoids (vitamin A and its derivatives) play pivotal roles in diverse processes, ranging from homeostasis to neurodegeneration, which are also influenced by steroid hormones. The rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. In the present study, we demonstrate that retinoids enhanced StAR expression and pregnenolone biosynthesis, and these parameters were markedly augmented by activation of the PKA pathway in mouse hippocampal neuronal HT22 cells. Deletion and mutational analyses of the 5'-flanking regions of the StAR gene revealed the importance of a retinoic acid receptor (RAR)/retinoid X receptor (RXR)-liver X receptor (LXR) heterodimeric motif at -200/-185 bp region in retinoid responsiveness. The RAR/RXR-LXR sequence motif can bind RARα and RXRα, and retinoid regulated transcription of the StAR gene was found to be influenced by the LXR pathway, representing signaling cross-talk in hippocampal neurosteroid biosynthesis. Steroidogenesis decreases during senescence due to declines in the central nervous system and the endocrine system, and results in hormone deficiencies, inferring the need for hormonal balance for healthy aging. Loss of neuronal cells, involving accumulation of amyloid beta (Aß) and/or phosphorylated Tau within the brain, is the pathological hallmark of Alzheimer's disease (AD). HT22 cells overexpressing either mutant APP (mAPP) or mutant Tau (mTau), conditions mimetic to AD, enhanced toxicities, and resulted in attenuation of both basal and retinoid-responsive StAR and pregnenolone levels. Co-expression of StAR with either mAPP or mTau diminished cytotoxicity, and concomitantly elevated neurosteroid biosynthesis, pointing to a protective role of StAR in AD. These findings provide insights into the molecular events by which retinoid signaling upregulates StAR and steroid levels in hippocampal neuronal cells, and StAR, by rescuing mAPP and/or mTau-induced toxicities, modulates neurosteroidogenesis and restores hormonal balance, which may have important implications in protecting AD and age-related complications and diseases.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Neuroesteroides , Fosfoproteínas , Retinoides , Transcripción Genética , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Receptores X del Hígado/metabolismo , Neuroesteroides/metabolismo , Receptores X Retinoide/metabolismo , Retinoides/metabolismo , Fosfoproteínas/genética
19.
Cells ; 11(17)2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36078067

RESUMEN

In the current study, for the first time, we study mitophagy enhancer urolithin A and a combination of urolithin A+green tea extract EGCG against human Aß peptide-induced mitochondrial and synaptic, dendritic, inflammatory toxicities and behavioral changes in humanized homozygous amyloid beta knockin (hAbKI) mice of late-onset Alzheimer's disease (AD). Our findings reveal significantly increased positive effects of urolithin A and a combination treatment of urolithin A+EGCG in hAbKI mice for phenotypic behavioral changes including motor coordination, locomotion/exploratory activity, spatial learning and working memory. mRNA and protein levels of mitochondrial fusion, synaptic, mitophagy and autophagy genes were upregulated, and mitochondrial fission genes are downregulated in urolithin A and combine treatment in hAbKI mice; however, the effect is stronger in combined treatment. Immunofluorescence analysis of hippocampal brain sections shows similar findings of mRNA and protein levels. Mitochondrial dysfunction is significantly reduced in both treatment groups, but a stronger reduction is observed in combined treatment. Dendritic spines and lengths are significantly increased in both treatment groups, but the effect is stronger in combined treatment. The fragmented number of mitochondria is reduced, and mitochondrial length is increased, and mitophagosomal formations are increased in both the groups, but the effect is stronger in the combined treatment. The levels of amyloid beta (Aß) 40 and Aß42 are reduced in both treatments, however, the reduction is higher for combined treatment. These observations suggest that urolithin A is protective against human Aß peptide-induced toxicities; however, combined treatment of urolithin A+EGCG is effective and stronger, indicating that combined therapy is promising to treat late-onset AD patients.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Catequina/análogos & derivados , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Catequina/farmacología , Cumarinas , Humanos , Ratones , Dinámicas Mitocondriales , ARN Mensajero/metabolismo
20.
Toxicol Res (Camb) ; 11(3): 426-436, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782652

RESUMEN

Objective: The central objective of this study was to investigate the cumulative effects restraint stress and sodium arsenite on reproductive health in male rats. Methods: Healthy male Wistar rats were allocated into 4 groups (n = 8). Animals in group 1 served as controls and did not subjected to any stress. Rats in groups 2, 3, and 4 were subjected to either restraint stress (5 h/day) or maintained on arsenic (25 ppm) via drinking water or both for 65 days. After completion of the experimental period, all the rats were analyzed for selected reproductive endpoints. Results: Restraint stress or sodium arsenite treatment increased serum corticosterone levels, reduced testicular daily sperm count, epididymal sperm viability, motility, membrane integrity, and decreased testicular steroidogenic enzymes such as 3ß- and 17ß-hydroxysteroid dehydrogenases associated with reduced serum testosterone levels, deteriorated testicular architecture, and reduced activity levels of testicular superoxide dismutase and catalase accompanied by elevated lipid peroxidation levels. In rats subjected to restraint stress and sodium arsenite, a significant decrease in selected sperm qualitative and quantitative parameters, serum testosterone levels were observed as compared with rats subjected to sodium arsenite alone. A significant increase in the levels of lipid peroxidation with a concomitant decrease in the activities of antioxidant enzymes was observed in the testis of rats subjected to both restraint stress and sodium arsenite treatment as compared with sodium arsenite alone intoxicated rats. Surprisingly, serum corticosterone levels were significantly elevated in rats following both stressors as compared with arsenic alone treated rats. Analysis of atomic absorption spectroscopy revealed that the accumulation of arsenic in the testis of arsenic-treated and arsenic plus immobilization stress groups was significant as compared with controls. Conclusions: Based on the findings, it can be concluded that deterioration of male reproductive health could be accelerated in arsenic intoxicated rats following restraint stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...