Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1352792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827154

RESUMEN

Introduction: The microbial-induced restoration of ferruginous crusts (canga), which partially cover iron deposits and host unique ecosystems, is a promising alternative for reducing the environmental impacts of the iron mining industry. Methods: To investigate the potential of microbial action to accelerate the reduction and oxidation of iron in substrates rich in hematite and goethite, four different microbial treatments (water only as a control - W; culture medium only - MO; medium + microbial consortium - MI; medium + microbial consortium + soluble iron - MIC) were periodically applied to induce iron dissolution and subsequent precipitation. Except for W, all the treatments resulted in the formation of biocemented blocks. Results: MO and MI treatments resulted in significant goethite dissolution, followed by precipitation of iron oxyhydroxides and an iron sulfate phase, due to iron oxidation, in addition to the preservation of microfossils. In the MIC treatment, biofilms were identified, but with few mineralogical changes in the iron-rich particles, indicating less iron cycling compared to the MO or MI treatment. Regarding microbial diversity, iron-reducing families, such as Enterobacteriaceae, were found in all microbially treated substrates. Discussion: However, the presence of Bacillaceae indicates the importance of fermentative bacteria in accelerating the dissolution of iron minerals. The acceleration of iron cycling was also promoted by microorganisms that couple nitrate reduction with Fe(II) oxidation. These findings demonstrate a sustainable and streamlined opportunity for restoration in mining areas.

2.
Microorganisms ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838412

RESUMEN

Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.

3.
Int J Genomics ; 2020: 9354204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32149072

RESUMEN

Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia. Currently, there are 18 different serotypes; the serotype 8 is the most widely distributed in the United States, Canada, United Kingdom, and southeastern Brazil. In this study, genomes of seven A. pleuropneumoniae serotype 8 clinical isolates were compared to the other genomes of twelve serotypes. The analyses of serotype 8 genomes resulted in a set of 2352 protein-coding sequences. Of these sequences, 76.6% are present in all serotypes, 18.5% are shared with some serotypes, and 4.9% were differential. This differential portion was characterized as a series of hypothetical and regulatory protein sequences: mobile element sequence. Synteny analysis demonstrated possible events of gene recombination and acquisition by horizontal gene transfer (HGT) in this species. A total of 30 sequences related to prophages were identified in the genomes. These sequences represented 0.3 to 3.5% of the genome of the strains analyzed, and 16 of them contained complete prophages. Similarity analysis between complete prophage sequences evidenced a possible HGT with species belonging to the family Pasteurellaceae. Thus, mobile genetic elements, such as prophages, are important components of the differential portion of the A. pleuropneumoniae genome and demonstrate a central role in the evolution of the species. This study represents the first study done to understand the genome of A. pleuropneumoniae serotype 8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...