Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723337

RESUMEN

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

2.
ACS Appl Mater Interfaces ; 15(26): 31776-31786, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37348845

RESUMEN

Wetting of solid surfaces is crucial for biological and industrial processes but is also associated with several harmful phenomena such as biofouling and corrosion that limit the effectiveness of various technologies in aquatic environments. Despite extensive research, these challenges remain critical today. Recently, we have developed a facile UV-grafting technique to covalently attach silicone-based coatings to solid substrates. In this study, the grafting process was evaluated as a function of UV exposure time on aluminum substrates. While short-time exposure to UV light results in the formation of lubricant-infused slippery surfaces (LISS), a flat, nonporous variant of slippery liquid-infused porous surfaces, longer exposure leads to the formation of semi-rigid cross-linked polydimethylsiloxane (PDMS) coatings, both covalently bound to the substrate. These coatings were exposed to aquatic media to evaluate their resistance to corrosion and biofouling. While the UV-grafted cross-linked PDMS coating effectively inhibits aluminum corrosion in aquatic environments and allows organisms to grow on the surface, the LISS coating demonstrates improved corrosion resistance but inhibits biofilm adhesion. The synergy between facile and low-cost fabrication, rapid binding kinetics, eco-friendliness, and nontoxicity of the applied materials to aquatic life combined with excellent wetting-repellent characteristics make this technology applicable for implementation in aquatic environments.

3.
ACS Appl Mater Interfaces ; 14(25): 29386-29397, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35696316

RESUMEN

Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses. In this study, liquid-infused slippery surfaces (LISSs), a recently developed nontoxic repellent technology, that is, a flat variation of omniphobic slippery liquid-infused porous surfaces (SLIPSs), were studied for their anti-corrosion and marine anti-biofouling characteristics on metallic substrates under damaged and plain undamaged conditions. Austenitic stainless steel was chosen as a model due to its wide application in aquatic environments. Our LISS coating effectively prevents biofouling adhesion and decays corrosion of metallic surfaces even if they are severely damaged. The mechanically robust LISS reported in this study significantly extends the SLIPS technology, prompting their application in the marine environment due to the synergy between the facile fabrication process, rapid binding kinetics, nontoxic, ecofriendly, and low-cost applied materials together with excellent repellent characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...