Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(1): 1-14, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35866299

RESUMEN

One of the most significant risk variants for Parkinson's disease (PD), rs356182, is located at the PD-associated locus near the alpha-synuclein (α-syn) encoding gene, SNCA. SNCA-proximal variants, including rs356182, are thought to function in PD risk through enhancers via allele-specific regulatory effects on SNCA expression. However, this interpretation discounts the complex activity of genetic enhancers and possible non-conical functions of α-syn. Here we investigated a novel risk mechanism for rs356182. We use CRISPR-Cas9 in LUHMES cells, a model for dopaminergic midbrain neurons, to generate precise hemizygous lesions at rs356182. The PD-protective (A/-), PD-risk (G/-) and wild-type (A/G) clones were neuronally differentiated and then compared transcriptionally and morphologically. Among the affected genes was SNCA, whose expression was promoted by the PD-protective allele (A) and repressed in its absence. In addition to SNCA, hundreds of genes were differentially expressed and associated with neurogenesis and axonogenesis-an effect not typically ascribed to α-syn. We also found that the transcription factor FOXO3 specifically binds to the rs356182 A-allele in differentiated LUHMES cells. Finally, we compared the results from the rs356182-edited cells to our previously published knockouts of SNCA and found only minimal overlap between the sets of significant differentially expressed genes. Together, the data implicate a risk mechanism for rs356182 in which the risk-allele (G) is associated with abnormal neuron development, independent of SNCA expression. We speculate that these pathological effects manifest as a diminished population of dopaminergic neurons during development leading to the predisposition for PD later in life.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Diferenciación Celular/genética , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
2.
Front Neurosci ; 16: 889802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898413

RESUMEN

Genome-wide association studies have consistently shown that the alpha-synuclein locus is significantly associated with Parkinson's disease. The mechanism by which this locus modulates the disease pathology and etiology remains largely under-investigated. This is due to the assumption that SNCA is the only driver of the functional aspects of several single nucleotide polymorphism (SNP) risk-signals at this locus. Recent evidence has shown that the risk associated with the top GWAS-identified variant within this locus is independent of SNCA expression, calling into question the validity of assigning function to the nearest gene, SNCA. In this review, we examine additional genes and risk variants present at the SNCA locus and how they may contribute to Parkinson's disease. Using the SNCA locus as an example, we hope to demonstrate that deeper and detailed functional validations are required for high impact disease-linked variants.

3.
Mol Cell Neurosci ; 119: 103702, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093507

RESUMEN

As researchers grapple with the mechanisms and implications of alpha-synuclein (α-syn) in neuropathology, it is often forgotten that the function(s) of α-syn in healthy cells remain largely elusive. Previous work has relied on observing α-syn localization in the cell or using knockout mouse models. Here, we address the specific role of α-syn in human dopaminergic neurons by disrupting its gene (SNCA) in the human dopaminergic neuron cell line, LUHMES. SNCA-null cells were able to differentiate grossly normally and showed modest effects on gene expression. The effects on gene expression were monodirectional, resulting primarily in the significant decrease of expression for 401 genes, implicating them as direct, or indirect positive targets of α-syn. Gene ontological analysis of these genes showed enrichment in terms associated with proliferation, differentiation, and synapse activity. These results add to the tapestry of α-syn biological functions. SIGNIFICANCE STATEMENT: The normal functions of α-syn have remained controversial, despite its clear importance in Parkinson's Disease pathology, where it accumulates in Lewy bodies and contributes to neurodegeneration. Its name implies synaptic and nuclear functions, but how it participates at these locations has not been resolved. Via knock-out experiments in dopaminergic neurons, we implicate α-syn as a functional participant in synapse activity and in proliferation/differentiation, the latter being novel and provide insight into α-syn's role in neuronal development.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , alfa-Sinucleína , Animales , Proliferación Celular , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Humanos , Ratones , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
NPJ Parkinsons Dis ; 6: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32964108

RESUMEN

Genetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown. Instead, the utility of GWAS currently lies primarily in predictive and diagnostic information. Although an amazing body of GWAS-based knowledge now exists, we advocate for more funding towards the exploration of the fundamental biology in post-GWAS studies; this research will bring us closer to causality and risk gene identification. Using Parkinson's Disease as an example, we ask, how, where, and when do risk loci contribute to disease?

5.
Neurobiol Dis ; 114: 53-64, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29486295

RESUMEN

In genome-wide association studies of complex diseases, many risk polymorphisms are found to lie in non-coding DNA and likely confer risk through allele-dependent differences in gene regulatory elements. However, because distal regulatory elements can alter gene expression at various distances on linear DNA, the identity of relevant genes is unknown for most risk loci. In Parkinson's disease, at least some genetic risk is likely intrinsic to a neuronal subpopulation of cells in the brain regions affected. In order to compare neuron-relevant methods of pairing risk polymorphisms to target genes as well as to further characterize a single-cell model of a neurodegenerative disease, we used the portionally-dopaminergic, neuronal, mesencephalic-derived cell line LUHMES to dissect differentiation-specific mechanisms of gene expression. We compared genome-wide gene expression in undifferentiated and differentiated cells with genome-wide histone H3K27ac and CTCF-bound regions. Whereas promoters and CTCF binding were largely consistent between differentiated and undifferentiated cells, enhancers were mostly unique. We matched the differentiation-specific appearance or disappearance of enhancers with changes in gene expression and identified 22,057 enhancers paired with 6388 differentially expressed genes by proximity. These enhancers are enriched with at least 13 transcription factor response elements, driving a cluster of genes involved in neurogenesis. We show that differentiated LUHMES cells, but not undifferentiated cells, show enrichment for PD-risk SNPs. Candidate genes for these loci are largely unrelated, though a subset is linked to synaptic vesicle cycling and transport, implying that PD-related disruption of these pathways is intrinsic to dopaminergic neurons.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mesencéfalo/patología , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Secuencia de Aminoácidos/genética , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...