RESUMEN
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
RESUMEN
Nanoflowers, an innovative class of nanoparticles with a distinctive flower-like structure, have garnered significant interest for their straightforward synthesis, remarkable stability, and heightened efficiency. Nanoflowers demonstrate versatile applications, serving as highly sensitive biosensors for rapidly and accurately detecting conditions such as diabetes, Parkinson's, Alzheimer's, and foodborne infections. Nanoflowers, with their intricate structure, show significant potential for targeted drug delivery and site-specific action, while also exhibiting versatility in applications such as enzyme purification, water purification from dyes and heavy metals, and gas sensing through materials like nickel oxide. This review also addresses the structural characteristics, surface modification, and operational mechanisms of nanoflowers. The nanoflowers play a crucial role in preventing premature drug leakage from nanocarriers. Additionally, the nanoflowers contribute to averting systemic toxicity and suboptimal therapy efficiency caused by hypoxia in the tumor microenvironment during chemotherapy and photodynamic therapy. This review entails the role of nanoflowers in cancer diagnosis and treatment. In the imminent future, the nanoflowers system is poised to revolutionize as a smart material, leveraging its exceptional surface-to-volume ratio to significantly augment adsorption efficiency across its intricate petals. This review delves into the merits and drawbacks of nanoflowers, exploring synthesis techniques, types, and their evolving applications in cancer.
Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Técnicas Biosensibles/métodos , Antineoplásicos/uso terapéuticoRESUMEN
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
RESUMEN
Oral cancer retains one of the lowest survival rates worldwide, despite recent therapeutic advancements signifying a tenacious challenge in healthcare. Artificial intelligence exhibits noteworthy potential in escalating diagnostic and treatment procedures, offering promising advancements in healthcare. This review entails the traditional imaging techniques for the oral cancer treatment. The role of artificial intelligence in prognosis of oral cancer including predictive modeling, identification of prognostic factors and risk stratification also discussed significantly in this review. The review also encompasses the utilization of artificial intelligence such as automated image analysis, computer-aided detection and diagnosis integration of machine learning algorithms for oral cancer diagnosis and treatment. The customizing treatment approaches for oral cancer through artificial intelligence based personalized medicine is also part of this review. See also the graphical abstract(Fig. 1).
RESUMEN
This review explores the potential of zeolite-based nanoparticles in modern pharmaceutical research, focusing on their role in advanced drug delivery systems. Zeolites, integrated into polymeric materials, offer precise drug delivery capabilities due to their unique structural features, biocompatibility, and controllable properties. Additionally, zeolites demonstrate environmental remediation potential through ion exchange processes. Synthetic zeolites, with modified release mechanisms, possess distinctive optical and electronic properties, expanding their applications in various fields. The study details zeolites' significance across industrial and scientific domains, outlining synthesis methods and size control techniques. The review emphasizes successful encapsulation and functionalization strategies for drug delivery, highlighting their role in enhancing drug stability and enabling targeted delivery. Advanced characterization techniques contribute to a comprehensive understanding of zeolite-based drug delivery systems. Addressing potential carcinogenicity, the review discusses environmental impact and risk assessment, stressing the importance of safety considerations in nanoparticle research. In biomedical applications, zeolites play vital roles in antidiarrheal, antitumor, antibacterial, and MRI contrast agents. Clinical trials featuring zeolite-based interventions underscore zeolite's potential in addressing diverse medical challenges. In conclusion, zeolite-based nanoparticles emerge as promising tools for targeted drug delivery, showcasing diverse applications and therapeutic potentials. Despite challenges, their unique advantages position zeolites at the forefront of innovative drug delivery systems.
RESUMEN
Fluorescent liposomes are pivotal in cancer research, serving as adaptable vehicles for imaging and therapeutics. These small lipid vesicles, capable of encapsulating fluorescent dyes, offer precise visualization and monitoring of their targeted delivery to cancer cells. This review delves into the critical role fluorescent liposomes play in enhancing both cancer diagnosis and treatment. It provides an in-depth analysis of their structural features, fluorescent labeling techniques, targeting strategies, and the challenges and opportunities they present. In the domain of cancer diagnosis, the article sheds light on various imaging modalities enabled by fluorescent liposomes, including fluorescence imaging and multimodal techniques. Emphasis is placed on early detection strategies, exhibiting the utility of targeted contrast agents and biomarker recognition for enhanced diagnostic precision. Moving on to cancer treatment, the review discusses the sophisticated drug delivery mechanisms facilitated by fluorescent liposomes, focusing on chemotherapy and photodynamic therapy. Moreover, the exploration extends to targeted therapy, explaining the applications of fluorescent liposomes in gene delivery and RNA interference. In a nutshell, his article comprehensively explores the multifaceted impact of fluorescent liposomes on advancing cancer diagnosis and treatment, combining existing knowledge with emerging trends.
RESUMEN
Intelligent Prescription Systems (IPS) represent a promising frontier in healthcare, offering the potential to optimize medication selection, dosing, and monitoring tailored to individual patient needs. This comprehensive review explores the current landscape of IPS, encompassing various technological approaches, applications, benefits, and challenges. IPS leverages advanced computational algorithms, machine learning techniques, and big data analytics to analyze patient-specific factors, such as medical history, genetic makeup, biomarkers, and lifestyle variables. By integrating this information with evidence-based guidelines, clinical decision support systems, and real-time patient data, IPS generates personalized treatment recommendations that enhance therapeutic outcomes while minimizing adverse effects and drug interactions. Key components of IPS include predictive modeling, drug-drug interaction detection, adverse event prediction, dose optimization, and medication adherence monitoring. These systems offer clinicians invaluable decision-support tools to navigate the complexities of medication management, particularly in the context of polypharmacy and chronic disease management. While IPS holds immense promise for improving patient care and reducing healthcare costs, several challenges must be addressed. These include data privacy and security concerns, interoperability issues, integration with existing electronic health record systems, and clinician adoption barriers. Additionally, the regulatory landscape surrounding IPS requires clarification to ensure compliance with evolving healthcare regulations. Despite these challenges, the rapid advancements in artificial intelligence, data analytics, and digital health technologies are driving the continued evolution and adoption of IPS. As precision medicine gains momentum, IPS is poised to play a central role in revolutionizing medication management, ultimately leading to more effective, personalized, and patient-centric healthcare delivery.
Asunto(s)
Medicina de Precisión , Humanos , Prescripciones de MedicamentosRESUMEN
Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting ß-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly ß-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.
RESUMEN
Aim: This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.Method: Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.Results: The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.Conclusion: The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.
[Box: see text].
Asunto(s)
Administración Oftálmica , Antifúngicos , Caspofungina , Córnea , Lipopéptidos , Liposomas , Caspofungina/administración & dosificación , Caspofungina/farmacocinética , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Antifúngicos/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Lipopéptidos/administración & dosificación , Lipopéptidos/química , Lipopéptidos/farmacocinética , Equinocandinas/administración & dosificación , Equinocandinas/farmacocinética , Equinocandinas/química , Permeabilidad , Química Farmacéutica/métodos , Conejos , Sistemas de Liberación de Medicamentos/métodosRESUMEN
This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
RESUMEN
A notable breakthrough in the treatment of colon cancer involves the utilisation of a cutting-edge drug delivery technology known as biosurfactant-derived nanomicelles. These nanomicelles, composed of natural biosurfactant molecules, possess the distinct capability to enclose pharmaceuticals or genetic material, such as DNA, siRNA, or mRNA, within spherical formations. With a size ranging from 10 to 100 nanometers, these nanomicelles exhibit precision targeting capabilities towards colon cancer cells, hence minimising the occurrence of side effects typically associated with treatment. Upon being specifically targeted, the nanomicelles liberate their cargo into cancer cells, resulting in enhanced therapy efficacy. This novel strategy utilises the specific attributes of the tumour microenvironment to administer precise and focused treatment. These nanomicelles improve the absorption by cells and reduce harm to healthy tissues by imitating important nutrients or utilising compounds that specifically target tumours. Furthermore, the incorporation of stimuli-responsive components allows for regulated medication release in reaction to the acidic environment seen in tumours. The review focuses on examining the use of biosurfactants and natural peptides in nanomicellar carriers as ways to fight against colon cancer. Folate-coated nanomicelles incorporating curcumin facilitate precise gene delivery, while the partnership of biosurfactants, such as surfactin from Bacillus subtilis and natural peptides, enables the transportation of particular cyclopeptides into the tumour network. Peptides, similar to bombesin, direct nanomicelles to specific places, while peptides based on curcumin control the release of medicinal substances. While preclinical investigations demonstrate promise, obstacles remain in formulation and regulatory issues. However, biosurfactant-based nanomicelles, particularly folate-coated carriers loaded with curcumin, show tremendous potential in overcoming biological barriers and delivering medicines efficiently to colon cancer cells.
RESUMEN
To overcome the limits of traditional antibiotic medications, novel approaches are needed to combat the growing global epidemic of Multidrug-resistant (MDR) infections. As drug-resistant bacteria develop, the importance of innovative antimicrobial methods is underscored by antibiotic abuse and misuse. The global threat of MDR microorganisms is increasing, which calls for a coordinated global response. Lipid Nanoparticles (LNPs) possess several characteristics that make them attractive choices for managing multidrug resistant (MDR) infections, as well as potential delivery systems for antimicrobial agents. Thus, LNPs improve drug solubility, stability, and targeted delivery, thereby mitigating the drawbacks of conventional antibiotic therapy. Several characteristics of LNPs, which stop MDR bacteria from developing resistance mechanisms, serve as guidelines for precision medicine. It presents a powerful approach for combating the growing concern of MDR bacteria by increasing Anti-Microbial Peptides (AMPs) bioavailability and targeting distribution to bacterial cells. LNPs have the potential to redefine antibacterial treatments for MDR illnesses in the context of this study. Further, it discusses LNP use in larger applications, such as fighting Anti-Microbial Resistance (AMR) and MDR. A complete understanding of the unique features, many uses, and importance of collaborative efforts to overcome the global challenge of antibiotic resistance are also conveyed in the study.
RESUMEN
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Animales , Transducción de Señal/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Agonistas Receptor de Péptidos Similares al GlucagónRESUMEN
The delivery of therapeutic agents faces significant hurdles posed by the endo-lysosomal pathway, a bottleneck that hampers clinical effectiveness. This comprehensive review addresses the urgent need to enhance cellular delivery mechanisms to overcome these obstacles. It focuses on the potential of smart nanomaterials, delving into their unique characteristics and mechanisms in detail. Special attention is given to their ability to strategically evade endosomal entrapment, thereby enhancing therapeutic efficacy. The manuscript thoroughly examines assays crucial for understanding endosomal escape and cellular uptake dynamics. By analyzing various assessment methods, we offer nuanced insights into these investigative approaches' multifaceted aspects. We meticulously analyze the use of smart nanocarriers, exploring diverse mechanisms such as pore formation, proton sponge effects, membrane destabilization, photochemical disruption, and the strategic use of endosomal escape agents. Each mechanism's effectiveness and potential application in mitigating endosomal entrapment are scrutinized. This paper provides a critical overview of the current landscape, emphasizing the need for advanced delivery systems to navigate the complexities of cellular uptake. Importantly, it underscores the transformative role of smart nanomaterials in revolutionizing cellular delivery strategies, leading to a paradigm shift towards improved therapeutic outcomes.
Asunto(s)
Endosomas , Lisosomas , Lisosomas/metabolismo , Humanos , Endosomas/metabolismo , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Nanoestructuras/química , Animales , Nanopartículas/químicaRESUMEN
Psoriasis, recognized as a chronic inflammatory skin disorder, disrupts immune system functionality. Global estimates by the World Psoriasis Day consortium indicate its impact on approximately 130 million people, constituting 4 to 5 percent of the worldwide population. Conventional drug delivery systems, mainly designed to alleviate psoriasis symptoms, fall short in achieving targeted action and optimal bioavailability due to inherent challenges such as the drug's brief half-life, instability, and a deficiency in ensuring both safety and efficacy. Liposomes, employed in drug delivery systems, emerge as highly promising carriers for augmenting the therapeutic efficacy of topically applied drugs. These small unilamellar vesicles demonstrate enhanced penetration capabilities, facilitating drug delivery through the stratum corneum layer of skin. This comprehensive review article illuminates diverse facets of liposomes as a promising drug delivery system to treat psoriasis. Addressing various aspects such as formulation strategies, encapsulation techniques, and targeted delivery, the review underscores the potential of liposomes in enhancing the efficacy and specificity of psoriasis treatments.
RESUMEN
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Ciencia Traslacional Biomédica , Nanopartículas del Metal/química , Nanopartículas del Metal/normas , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Ciencia Traslacional Biomédica/tendencias , Medicina de Precisión , Nanomedicina Teranóstica , Humanos , AnimalesRESUMEN
Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.
Asunto(s)
Amorphophallus , Mananos , Mananos/química , Mananos/aislamiento & purificación , Humanos , Amorphophallus/química , Animales , Fibras de la Dieta/análisis , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Suplementos Dietéticos , Prebióticos , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacologíaRESUMEN
Anthocyanins (ANCs) are obtained from pigmented foods like blueberry, strawberry, and red cabbage and are phenolic compounds belonging to the flavonoids family. ANCs have garnered significant attention in recent years due to their diverse biological activities and potential health benefits. This comprehensive review presents a holistic exploration of anthocyanins, spanning from their chemical structure and biosynthesis pathways to the myriad analytical techniques employed for their identification and quantification. Furthermore, the rich tapestry of plant sources yields anthocyanins is delved into, highlighting their incorporation into various pharmaceutical formulations. This review aims to provide a comprehensive synthesis of current knowledge on anthocyanins, spanning from their origins in nature to their multifaceted pharmacological activities and innovative pharmaceutical applications.
.RESUMEN
Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified via either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient's individuality. The bioactive compoundsfortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells via exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.
RESUMEN
Aim: Photobiomodulation involves the use of low-level light therapy or near-infrared light therapy found to be useful in the treatment of a wide range of neurological diseases. Objective: The aim is to review the mechanism and clinical applications of photobiomodulation therapy (PBMT) in managing Alzheimer's disease. Methods: To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. Results: PBMT elicits reduction of beta-amyloid plaque, restoration of mitochondrial function, anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. Conclusion: The PBMT could be helpful in patients non-responsive to traditional pharmacological therapy providing significant aid in the management of Alzheimer's disease when introduced into the medical field.
Alzheimer's disease (AD) is an incurable progressive neurodegenerative disease clinically manifested with a decline in cognitive function. To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. PBMT elicits various mechanisms such as reduction of beta-amyloid plaque, Restoration of mitochondrial function and maintenance the homeostasis, and anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. The PBMT could be helpful in patients who are non-responsive to conventional pharmacological therapy. This therapy might provide significant aid in the management of AD when introduced into the medical field. However, it requires various intensive research to be conducted for further conclusion.