Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
IEEE Trans Med Imaging ; 41(4): 895-902, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34748485

RESUMEN

Dark-field radiography of the human chest is a promising novel imaging technique with the potential of becoming a valuable tool for the early diagnosis of chronic obstructive pulmonary disease and other diseases of the lung. The large field-of-view needed for clinical purposes could recently be achieved by a scanning system. While this approach overcomes the limited availability of large area grating structures, it also results in a prolonged image acquisition time, leading to concomitant motion artifacts caused by intrathoracic movements (e.g. the heartbeat). Here we report on a motion artifact reduction algorithm for a dark-field X-ray scanning system, and its successful evaluation in a simulated chest phantom and human in vivo chest X-ray dark-field data. By partitioning the acquired data into virtual scans with shortened acquisition time, such motion artifacts may be reduced or even fully avoided. Our results demonstrate that motion artifacts (e.g. induced by cardiac motion or diaphragmatic movements) can effectively be reduced, thus significantly improving the image quality of dark-field chest radiographs.


Asunto(s)
Algoritmos , Artefactos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Radiografía
3.
Lancet Digit Health ; 3(11): e733-e744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711378

RESUMEN

BACKGROUND: Although advanced medical imaging technologies give detailed diagnostic information, a low-dose, fast, and inexpensive option for early detection of respiratory diseases and follow-ups is still lacking. The novel method of x-ray dark-field chest imaging might fill this gap but has not yet been studied in living humans. Enabling the assessment of microstructural changes in lung parenchyma, this technique presents a more sensitive alternative to conventional chest x-rays, and yet requires only a fraction of the dose applied in CT. We studied the application of this technique to assess pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). METHODS: In this diagnostic accuracy study, we designed and built a novel dark-field chest x-ray system (Technical University of Munich, Munich, Germany)-which is also capable of simultaneously acquiring a conventional thorax radiograph (7 s, 0·035 mSv effective dose). Patients who had undergone a medically indicated chest CT were recruited from the department of Radiology and Pneumology of our site (Klinikum rechts der Isar, Technical University of Munich, Munich, Germany). Patients with pulmonary pathologies, or conditions other than COPD, that might influence lung parenchyma were excluded. For patients with different disease stages of pulmonary emphysema, x-ray dark-field images and CT images were acquired and visually assessed by five readers. Pulmonary function tests (spirometry and body plethysmography) were performed for every patient and for a subgroup of patients the measurement of diffusion capacity was performed. Individual patient datasets were statistically evaluated using correlation testing, rank-based analysis of variance, and pair-wise post-hoc comparison. FINDINGS: Between October, 2018 and December, 2019 we enrolled 77 patients. Compared with CT-based parameters (quantitative emphysema ρ=-0·27, p=0·089 and visual emphysema ρ=-0·45, p=0·0028), the dark-field signal (ρ=0·62, p<0·0001) yields a stronger correlation with lung diffusion capacity in the evaluated cohort. Emphysema assessment based on dark-field chest x-ray features yields consistent conclusions with findings from visual CT image interpretation and shows improved diagnostic performance than conventional clinical tests characterising emphysema. Pair-wise comparison of corresponding test parameters between adjacent visual emphysema severity groups (CT-based, reference standard) showed higher effect sizes. The mean effect size over the group comparisons (absent-trace, trace-mild, mild-moderate, and moderate-confluent or advanced destructive visual emphysema grades) for the COPD assessment test score is 0·21, for forced expiratory volume in 1 s (FEV1)/functional vital capacity is 0·25, for FEV1% of predicted is 0·23, for residual volume % of predicted is 0·24, for CT emphysema index is 0·35, for dark-field signal homogeneity within lungs is 0·38, for dark-field signal texture within lungs is 0·38, and for dark-field-based emphysema severity is 0·42. INTERPRETATION: X-ray dark-field chest imaging allows the diagnosis of pulmonary emphysema in patients with COPD because this technique provides relevant information representing the structural condition of lung parenchyma. This technique might offer a low radiation dose alternative to CT in COPD and potentially other lung disorders. FUNDING: European Research Council, Deutsche Forschungsgemeinschaft, Royal Philips, and Karlsruhe Nano Micro Facility.


Asunto(s)
Enfisema/diagnóstico , Pulmón/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico , Radiografía Torácica/métodos , Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Enfisema/diagnóstico por imagen , Femenino , Volumen Espiratorio Forzado , Alemania , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Índice de Severidad de la Enfermedad , Fumar , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
4.
Med Phys ; 48(10): 6152-6159, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34314019

RESUMEN

PURPOSE: The purpose of this study was to evaluate the dose characteristic for patient examinations at the first clinical X-ray dark-field chest radiography system and to determine whether the effective patient dose is within a clinically acceptable dose range. METHODS: A clinical setup for grating-based dark-field chest radiography was constructed and commissioned, operating at a tube voltage of 70 kVp. Thermoluminescent dosimeter (TLD) measurements were conducted using an anthropomorphic phantom modeling the reference person to obtain a conversion coefficient relating dose area product (DAP) to effective patient dose at the dark-field system. For 92 patients, the DAP values for posterior-anterior measurements were collected at the dark-field system. Using the previously determined conversion coefficient, the effective dose was calculated. RESULTS: A reference person, modeled by an anthropomorphic phantom, receives an effective dose of 35 µSv. For the examined patients, a mean effective dose of 39 µSv was found. CONCLUSIONS: The effective dose at the clinical dark-field radiography system, generating both attenuation and dark-field images, is within the range of reported standard dose values for chest radiography.


Asunto(s)
Radiometría , Dosimetría Termoluminiscente , Humanos , Fantasmas de Imagen , Dosis de Radiación , Radiografía
5.
Eur Radiol Exp ; 3(1): 25, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31292790

RESUMEN

BACKGROUND: Although x-ray dark-field imaging has been intensively investigated for lung imaging in different animal models, there is very limited data about imaging features in the human lungs. Therefore, in this work, a reader study on nine post-mortem human chest x-ray dark-field radiographs was performed to evaluate dark-field signal strength in the lungs, intraobserver and interobserver agreement, and image quality and to correlate with findings of conventional x-ray and CT. METHODS: In this prospective work, chest x-ray dark-field radiography with a tube voltage of 70 kVp was performed post-mortem on nine humans (3 females, 6 males, age range 52-88 years). Visual quantification of dark-field and transmission signals in the lungs was performed by three radiologists. Results were compared to findings on conventional x-rays and 256-slice computed tomography. Image quality was evaluated. For ordinal data, median, range, and dot plots with medians and 95% confidence intervals are presented; intraobserver and interobserver agreement were determined using weighted Cohen κ. RESULTS: Dark-field signal grading showed significant differences between upper and middle (p = 0.004-0.016, readers 1-3) as well as upper and lower zones (p = 0.004-0.016, readers 1-2). Median transmission grading was indifferent between all lung regions. Intraobserver and interobserver agreements were substantial to almost perfect for grading of both dark-field (κ = 0.793-0.971 and κ = 0.828-0.893) and transmission images (κ = 0.790-0.918 and κ = 0.700-0.772). Pulmonary infiltrates correlated with areas of reduced dark-field signal. Image quality was rated good for dark-field images. CONCLUSIONS: Chest x-ray dark-field images provide information of the lungs complementary to conventional x-ray and allow reliable visual quantification of dark-field signal strength.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X , Anciano , Anciano de 80 o más Años , Correlación de Datos , Diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiografía
6.
PLoS One ; 13(9): e0204565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261038

RESUMEN

Disorders of the lungs such as chronic obstructive pulmonary disease (COPD) are a major cause of chronic morbidity and mortality and the third leading cause of death in the world. The absence of sensitive diagnostic tests for early disease stages of COPD results in under-diagnosis of this treatable disease in an estimated 60-85% of the patients. In recent years a grating-based approach to X-ray dark-field contrast imaging has shown to be very sensitive for the detection and quantification of pulmonary emphysema in small animal models. However, translation of this technique to imaging systems suitable for humans remains challenging and has not yet been reported. In this manuscript, we present the first X-ray dark-field images of in-situ human lungs in a deceased body, demonstrating the feasibility of X-ray dark-field chest radiography on a human scale. Results were correlated with findings of computed tomography imaging and autopsy. The performance of the experimental radiography setup allows acquisition of multi-contrast chest X-ray images within clinical boundary conditions, including radiation dose. Upcoming clinical studies will have to demonstrate that this technology has the potential to improve early diagnosis of COPD and pulmonary diseases in general.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Autopsia , Cadáver , Diagnóstico Precoz , Estudios de Factibilidad , Femenino , Humanos , Interferometría/instrumentación , Interferometría/métodos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía Torácica/instrumentación , Radiografía Torácica/estadística & datos numéricos , Tomografía Computarizada por Rayos X
7.
Sci Rep ; 8(1): 2602, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422512

RESUMEN

The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.


Asunto(s)
Pulmón/diagnóstico por imagen , Neumotórax/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Radiografía/métodos , Porcinos , Rayos X
8.
Sci Rep ; 7(1): 4807, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684858

RESUMEN

X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm2) of a living pig, acquired with clinically compatible parameters (40 s scan time, approx. 80 µSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking.


Asunto(s)
Pulmón/diagnóstico por imagen , Radiografía Torácica/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Masculino , Radiografía Torácica/instrumentación , Porcinos , Tomografía Computarizada por Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...