Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372390

RESUMEN

Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.


Asunto(s)
Tipificación del Cuerpo , Pez Cebra , Animales , Tipificación del Cuerpo/genética , Proteína Nodal/genética , Proteína Nodal/metabolismo , Morfogénesis/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Regulación del Desarrollo de la Expresión Génica
2.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Dev Cell ; 31(6): 774-83, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535919

RESUMEN

Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function.


Asunto(s)
Tipificación del Cuerpo , Forma de la Célula , Notocorda/embriología , Pez Cebra/embriología , Animales , Núcleo Celular/metabolismo , Cilios/fisiología , Células Epiteliales/citología , Epitelio/metabolismo , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Notocorda/metabolismo , Somitos/metabolismo , Células Madre/citología , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA