Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Indian Acad Neurol ; 27(3): 297-306, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38835164

RESUMEN

OBJECTIVE: Motor imagery-based brain-computer interface (MI-BCI) is a promising novel mode of stroke rehabilitation. The current study aims to investigate the feasibility of MI-BCI in upper limb rehabilitation of chronic stroke survivors and also to study the early event-related desynchronization after MI-BCI intervention. METHODS: Changes in the characteristics of sensorimotor rhythm modulations in response to a short brain-computer interface (BCI) intervention for upper limb rehabilitation of stroke-disabled hand and normal hand were examined. The participants were trained to modulate their brain rhythms through motor imagery or execution during calibration, and they played a virtual marble game during the feedback session, where the movement of the marble was controlled by their sensorimotor rhythm. RESULTS: Ipsilesional and contralesional activities were observed in the brain during the upper limb rehabilitation using BCI intervention. All the participants were able to successfully control the position of the virtual marble using their sensorimotor rhythm. CONCLUSIONS: The preliminary results support the feasibility of BCI in upper limb rehabilitation and unveil the capability of MI-BCI as a promising medical intervention. This study provides a strong platform for clinicians to build upon new strategies for stroke rehabilitation by integrating MI-BCI with various therapeutic options to induce neural plasticity and recovery.

2.
PLoS One ; 11(9): e0162567, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583549

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0159959.].

3.
PLoS One ; 11(7): e0159959, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467528

RESUMEN

Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain-Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity.


Asunto(s)
Interfaces Cerebro-Computador , Movimiento , Espectroscopía Infrarroja Corta/métodos , Biorretroalimentación Psicológica , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-19162856

RESUMEN

Brain Computer Interface (BCI) provides an alternative communication and control method for people with severe motor disabilities. Motor imagery patterns are widely used in Electroencephalogram (EEG) based BCIs. These motor imagery activities are associated with variation in alpha and beta band power of EEG signals called Event Related Desynchronization/synchronization (ERD/ERS). The dominant frequency bands are subject-specific and therefore performance of motor imagery based BCIs are sensitive to both temporal filtering and spatial filtering. As the optimum filter is strongly subject-dependent, we propose a method that selects the subject-specific discriminative frequency components using time-frequency plots of Fisher ratio of two-class motor imagery patterns. We also propose a low complexity adaptive Finite Impulse Response (FIR) filter bank system based on coefficient decimation technique which can realize the subject-specific bandpass filters adaptively depending on the information of Fisher ratio map. Features are extracted only from the selected frequency components. The proposed adaptive filter bank based system offers average classification accuracy of about 90%, which is slightly better than the existing fixed filter bank system.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Motores/fisiología , Imaginación/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-Computador , Algoritmos , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...