Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 44(7): 289-301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867464

RESUMEN

The human Origin Recognition Complex (ORC) is required not only for the initiation of DNA replication, but is also implicated in diverse cellular functions, including chromatin organization, centrosome biology, and cytokinesis. The smallest subunit of ORC, Orc6, is poorly conserved amongst eukaryotes. Recent studies from our laboratory have suggested that human Orc6 is not required for replication licensing, but is needed for S-phase progression. Further, ATR-dependent phosphorylation of Orc6 at T229 is implicated in DNA damage response during S-phase. In this study, we demonstrate that the CDK-dependent phosphorylation of Orc6 at T195 occurs during mitosis. While the phosphorylation at T195 does not seem to be required to exit mitosis, cells expressing the phosphomimetic T195E mutant of Orc6 impede S-phase progression. Moreover, the phosphorylated form of Orc6 associates with ORC more robustly, and Orc6 shows enhanced association with the ORC outside of G1, supporting the view that Orc6 may prevent the role of Orc1-5 in licensing outside of G1. Finally, Orc6 and the phosphorylated Orc6 localize to the nucleolar organizing centers and regulate ribosome biogenesis. Our results suggest that phosphorylated Orc6 at T195 prevents replication.


Asunto(s)
Replicación del ADN , Mitosis , Complejo de Reconocimiento del Origen , Ribosomas , Complejo de Reconocimiento del Origen/metabolismo , Complejo de Reconocimiento del Origen/genética , Humanos , Fosforilación , Ribosomas/metabolismo , Células HeLa , Fase S , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/genética
2.
Biology (Basel) ; 13(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534422

RESUMEN

In all eukaryotes, the initiation of DNA replication requires a stepwise assembly of factors onto the origins of DNA replication. This is pioneered by the Origin Recognition Complex, which recruits Cdc6. Together, they bring Cdt1, which shepherds MCM2-7 to form the OCCM complex. Sequentially, a second Cdt1-bound hexamer of MCM2-7 is recruited by ORC-Cdc6 to form an MCM double hexamer, which forms a part of the pre-RC. Although the mechanism of ORC binding to DNA varies across eukaryotes, how ORC is recruited to replication origins in human cells remains an area of intense investigation. This review discusses how the chromatin environment influences pre-RC assembly, function, and, eventually, origin activity.

3.
Elife ; 132024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240312

RESUMEN

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Asunto(s)
Región Organizadora del Nucléolo , Precursores del ARN , Humanos , Animales , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Cromosomas Humanos/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Mamíferos/genética
4.
Mol Cell Biol ; 43(4): 143-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096556

RESUMEN

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.


Asunto(s)
Replicación del ADN , Complejo de Reconocimiento del Origen , Humanos , Fosforilación , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fase S , Inestabilidad Genómica , Daño del ADN
5.
Bioessays ; 45(4): e2200229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36811379

RESUMEN

Error-free genome duplication and accurate cell division are critical for cell survival. In all three domains of life, bacteria, archaea, and eukaryotes, initiator proteins bind replication origins in an ATP-dependent manner, play critical roles in replisome assembly, and coordinate cell-cycle regulation. We discuss how the eukaryotic initiator, Origin recognition complex (ORC), coordinates different events during the cell cycle. We propose that ORC is the maestro driving the orchestra to coordinately perform the musical pieces of replication, chromatin organization, and repair.


Asunto(s)
Replicación del ADN , Música , Cromatina , Ciclo Celular/fisiología , Cromosomas , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica
6.
Transcription ; 13(1-3): 82-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35904285

RESUMEN

Transcription regulation is an important mechanism that controls pluripotency and differentiation. Transcription factors dictate cell fate decisions by functioning cooperatively with chromatin regulators. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein regulates the expression of differentiation-associated genes by modulating the chromatin architecture at promoters. We highlight the collaboration of BEND3 with the polycomb repressive complex in coordinating transcription repression and propose a model highlighting the relevance of the BEND3-PRC2 axis in gene regulation and chromatin organization.Abbreviations: BEND3, BANP, E5R and Nac1 domain; rDNA, ribosomal DNA; PRC2, Polycomb Repressive Complex 2; H3K27me3, Histone H3 Lysine 27 methylation; PcG, Polycomb group.


Asunto(s)
Proteínas de Drosophila , Histonas , Cromatina/genética , ADN Ribosómico , Proteínas de Drosophila/genética , Histonas/genética , Histonas/metabolismo , Metilación , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622890

RESUMEN

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Complejo de Reconocimiento del Origen , Fase S , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas MutL/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217604

RESUMEN

BEN domain-containing proteins are emerging rapidly as an important class of factors involved in modulating gene expression, yet the molecular basis of how they regulate chromatin function and transcription remains to be established. BEND3 is a quadruple BEN domain-containing protein that associates with heterochromatin and functions as a transcriptional repressor. We find that BEND3 is highly expressed in pluripotent cells, and the induction of differentiation results in the down-regulation of BEND3. The removal of BEND3 from pluripotent cells results in cells exhibiting upregulation of the differentiation-inducing gene expression signature. We find that BEND3 binds to the promoters of differentiation-associated factors and key cell cycle regulators, including CDKN1A, encoding the cell cycle inhibitor p21, and represses the expression of differentiation-associated genes by enhancing H3K27me3 decoration at these promoters. Our results support a model in which transcription repression mediated by BEND3 is essential for normal development and to prevent differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Pluripotentes/citología , Proteínas Represoras/fisiología , G-Cuádruplex , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas
9.
Genes Dev ; 36(3-4): 225-240, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35144965

RESUMEN

The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.


Asunto(s)
Proteínas Represoras , Factores de Transcripción , Animales , Sitios de Unión , Drosophila/metabolismo , Mamíferos , Unión Proteica , Dominios Proteicos , Proteínas Represoras/genética , Factores de Transcripción/metabolismo
10.
DNA Repair (Amst) ; 103: 103131, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992866

RESUMEN

In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Animales , Ciclo Celular , Eucariontes/genética , Humanos , Origen de Réplica
11.
Elife ; 92020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33108271

RESUMEN

Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.


Asunto(s)
Proliferación Celular/genética , Proteínas Co-Represoras/genética , Proteínas del Citoesqueleto/genética , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Transducción de Señal/fisiología , Proteínas Co-Represoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , ARN Helicasas DEAD-box/metabolismo , Células HCT116 , Células HeLa , Humanos , ARN Largo no Codificante/metabolismo , Fase S , Regulación hacia Arriba
12.
Cell Cycle ; 19(21): 2927-2938, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33044890

RESUMEN

RFWD3 is an E3 ubiquitin ligase that plays important roles in DNA damage response and DNA replication. We have previously demonstrated that the stabilization of RFWD3 by PCNA at the replication fork enables ubiquitination of the single-stranded binding protein, RPA and its subsequent degradation for replication progression. Here, we report that RFWD3 associates with the Origin Recognition Complex (ORC) and ORC-Associated (ORCA/LRWD1), components of the pre-replicative complex required for the initiation of DNA replication. Overexpression of ORC/ORCA leads to the stabilization of RFWD3. Interestingly, RFWD3 seems to stabilize ORC/ORCA in cells expressing wild type p53, as the depletion of RFWD3 reduces the levels of ORC/ORCA. Further, the catalytic activity of RFWD3 is required for the stabilization of ORC. Our results indicate that the RFWD3 promotes the stability of ORC, enabling efficient pre-RC assembly.


Asunto(s)
Complejo de Reconocimiento del Origen/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Cromatina/genética , Daño del ADN/genética , Replicación del ADN/genética , Células HEK293 , Humanos , Proteínas de Microtúbulos/genética , Unión Proteica/genética , Ubiquitinación/genética
13.
RNA ; 26(11): 1603-1620, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32675111

RESUMEN

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Pulmón/citología , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/metabolismo , Suero/química , Ciclo Celular , Línea Celular , Fibroblastos/química , Fibroblastos/citología , Células HEK293 , Humanos , Pulmón/química , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Regulación hacia Arriba , Secuenciación del Exoma
14.
iScience ; 23(5): 101038, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32344376

RESUMEN

Telomeres are maintained by telomerase or in a subset of cancer cells by a homologous recombination (HR)-based mechanism, Alternative Lengthening of Telomeres (ALT). The mechanisms regulating telomere-homeostasis in ALT cells remain unclear. We report that a replication initiator protein, Origin Recognition Complex-Associated (ORCA/LRWD1), by localizing at the ALT-telomeres, modulates HR activity. ORCA's localization to the ALT-telomeres is facilitated by its interaction to SUMOylated shelterin components. The loss of ORCA in ALT-positive cells elevates the levels of two mediators of HR, RPA and RAD51, and consistent with this, we observe increased ALT-associated promyelocytic leukemia body formation and telomere sister chromatid exchange. ORCA binds to RPA and modulates the association of RPA to telomeres. Finally, the loss of ORCA causes global chromatin decondensation, including at the telomeres. Our results demonstrate that ORCA acts as an inhibitor of HR by modulating RPA binding to ssDNA and inducing chromatin compaction.

15.
RNA ; 26(2): 175-185, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31690584

RESUMEN

Triple-negative breast cancer (TNBC) is one of the most aggressive breast cancer (BC) subtypes with a poor prognosis and high recurrence rate. Recent studies have identified vital roles played by several lncRNAs (long noncoding RNAs) in BC pathobiology. Cell type-specific expression of lncRNAs and their potential role in regulating the expression of oncogenic and tumor suppressor genes have made them promising cancer drug targets. By performing a transcriptome screen in an isogenic TNBC/basal subtype BC progression cell line model, we recently reported ∼1800 lncRNAs that display aberrant expression during breast cancer progression. Mechanistic studies on one such nuclear-retained lncRNA, linc02095, reveal that it promotes breast cancer proliferation by facilitating the expression of oncogenic transcription factor, SOX9. Both linc02095 and SOX9 display coregulated expression in BC patients as well in basal subtype BC cell lines. Knockdown of linc02095 results in decreased BC cell proliferation, whereas its overexpression promotes cells proliferation. Linc02095-depleted cells display reduced expression of SOX9 concomitant with reduced RNA polymerase II occupancy at the SOX9 gene body as well as defective SOX9 mRNA export, implying that linc02095 positively regulates SOX9 transcription and mRNA export. Finally, we identify a positive feedback loop in BC cells that controls the expression of both linc02095 and SOX9 Thus, our results unearth tumor-promoting activities of a nuclear lncRNA linc02095 by facilitating the expression of key oncogenic transcription factor in BC.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/genética , ARN Largo no Codificante/genética , Factor de Transcripción SOX9/genética , Neoplasias de la Mama Triple Negativas/genética , Mama/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Femenino , Perfilación de la Expresión Génica , Humanos , Transcriptoma , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
16.
Proc Natl Acad Sci U S A ; 115(52): 13282-13287, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530694

RESUMEN

RING finger and WD repeat domain-containing protein 3 (RFWD3) is an E3 ligase known to facilitate homologous recombination by removing replication protein A (RPA) and RAD51 from DNA damage sites. Further, RPA-mediated recruitment of RFWD3 to stalled replication forks is essential for interstrand cross-link repair. Here, we report that in unperturbed human cells, RFWD3 localizes at replication forks and associates with proliferating cell nuclear antigen (PCNA) via its PCNA-interacting protein (PIP) motif. PCNA association is critical for the stability of RFWD3 and for DNA replication. Cells lacking RFWD3 show slower fork progression, a prolonged S phase, and an increase in the loading of several replication-fork components on the chromatin. These findings all point to increased frequency of stalled forks in the absence of RFWD3. The S-phase defect is rescued by WT RFWD3, but not by the PIP mutant, suggesting that the interaction of RFWD3 with PCNA is critical for DNA replication. Finally, we observe reduced ubiquitination of RPA in cells lacking RFWD3. We conclude that the stabilization of RFWD3 by PCNA at the replication fork enables the polyubiquitination of RPA and its subsequent degradation for proper DNA replication.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación , Células HeLa , Humanos , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo
17.
PLoS Genet ; 14(11): e1007802, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496290

RESUMEN

The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Estabilidad del ARN , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Unión Proteica , ARN sin Sentido/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
18.
Nucleic Acids Res ; 46(19): 10405-10416, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30102375

RESUMEN

Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.


Asunto(s)
Ciclo Celular/genética , Proteína 1 Similar a ELAV/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Diferenciación Celular/genética , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
19.
FEBS Lett ; 591(18): 2890-2904, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28833069

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are proteins that catalyse widespread A-to-I editing within RNA sequences. We recently reported that ADAR2 edits and stabilizes nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). Here, we report that ADAR1 coordinates with ADAR2 to regulate editing and stability of Ctn RNA. We observe an RNA-dependent interaction between ADAR1 and ADAR2. Furthermore, ADAR1 negatively regulates interaction of Ctn RNA with RNA-destabilizing proteins. We also show that breast cancer (BC) cells display elevated ADAR1 but not ADAR2 levels, compared to nontumourigenic cells. Additionally, BC patients with elevated levels of ADAR1 show low survival. Our findings provide insights into overlapping substrate preferences of ADARs and potential involvement of ADAR1 in BC.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN/genética , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Regiones no Traducidas 3'/genética , Adenosina Desaminasa/genética , Línea Celular , Línea Celular Tumoral , Humanos , Inmunoprecipitación , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética
20.
Carcinogenesis ; 38(10): 966-975, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633434

RESUMEN

Breast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/genética , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Oncogenes , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Análisis de Matrices Tisulares , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...