Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833407

RESUMEN

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


Asunto(s)
Metilación de ADN , Impresión Genómica , Plomo , Hígado , Animales , Metilación de ADN/efectos de los fármacos , Ratones , Femenino , Hígado/efectos de los fármacos , Masculino , Plomo/toxicidad , Plomo/sangre , Impresión Genómica/efectos de los fármacos , Dietilhexil Ftalato/toxicidad , Encéfalo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición Materna , Ácidos Ftálicos/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal , Epigénesis Genética/efectos de los fármacos
2.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569549

RESUMEN

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilación de ADN , Proteínas de Unión al ADN , Impresión Genómica , Oxidación-Reducción , Proteínas Proto-Oncogénicas , Espermatozoides , Animales , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramación Celular/genética , Ratones Noqueados , Ratones Endogámicos C57BL
3.
Nucleic Acids Res ; 52(7): e38, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407446

RESUMEN

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection P-value calculation achieved higher sensitivities for low-input datasets and was validated in over 100 000 public diverse methylome profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.


Asunto(s)
Metilación de ADN , Análisis de la Célula Individual , Animales , Femenino , Humanos , Masculino , Ratones , Islas de CpG , ADN/genética , ADN/metabolismo , Epigenómica/métodos , Células Germinativas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de la Célula Individual/métodos
4.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37786695

RESUMEN

The Infinium BeadChip is the most widely used DNA methylome assay technology for population-scale epigenome profiling. However, the standard workflow requires over 200 ng of input DNA, hindering its application to small cell-number samples, such as primordial germ cells. We developed experimental and analysis workflows to extend this technology to suboptimal input DNA conditions, including ultra-low input down to single cells. DNA preamplification significantly enhanced detection rates to over 50% in five-cell samples and ∼25% in single cells. Enzymatic conversion also substantially improved data quality. Computationally, we developed a method to model the background signal's influence on the DNA methylation level readings. The modified detection p -values calculation achieved higher sensitivities for low-input datasets and was validated in over 100,000 public datasets with diverse methylation profiles. We employed the optimized workflow to query the demethylation dynamics in mouse primordial germ cells available at low cell numbers. Our data revealed nuanced chromatin states, sex disparities, and the role of DNA methylation in transposable element regulation during germ cell development. Collectively, we present comprehensive experimental and computational solutions to extend this widely used methylation assay technology to applications with limited DNA.

5.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873115

RESUMEN

Background: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods: Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results: The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions: We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.

6.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865267

RESUMEN

DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.

7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850016

RESUMEN

Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans' high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 (EN1) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Proteínas de Homeodominio/genética , Animales , Evolución Biológica , Glándulas Ecrinas/metabolismo , Glándulas Ecrinas/fisiología , Ectodermo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Proteínas de Homeodominio/metabolismo , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Secuencias Reguladoras de Ácidos Nucleicos/genética , Piel/metabolismo , Sudoración/genética , Sudoración/fisiología , Factores de Transcripción/genética
8.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352108

RESUMEN

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dioxigenasas , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH , Proteínas Proto-Oncogénicas/genética
9.
Hum Mol Genet ; 29(R1): R107-R116, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32592473

RESUMEN

Temple syndrome (TS) and Kagami-Ogata syndrome (KOS) are imprinting disorders caused by absence or overexpression of genes within a single imprinted cluster on human chromosome 14q32. TS most frequently arises from maternal UPD14 or epimutations/deletions on the paternal chromosome, whereas KOS most frequently arises from paternal UPD14 or epimutations/deletions on the maternal chromosome. In this review, we describe the clinical symptoms and genetic/epigenetic features of this imprinted region. The locus encompasses paternally expressed protein-coding genes (DLK1, RTL1 and DIO3) and maternally expressed lncRNAs (MEG3/GTL2, RTL1as and MEG8), as well as numerous miRNAs and snoRNAs. Control of expression is complex, with three differentially methylated regions regulating germline, placental and tissue-specific transcription. The strong conserved synteny between mouse chromosome 12aF1 and human chromosome 14q32 has enabled the use of mouse models to elucidate imprinting mechanisms and decipher the contribution of genes to the symptoms of TS and KOS. In this review, we describe relevant mouse models and highlight their value to better inform treatment options for long-term management of TS and KOS patients.


Asunto(s)
Anomalías Múltiples , Trastornos de los Cromosomas/patología , Cromosomas Humanos Par 14/genética , Modelos Animales de Enfermedad , Impresión Genómica , Hallux/anomalías , Discapacidad Intelectual/patología , Uñas Malformadas/patología , Pulgar/anomalías , Disomía Uniparental/patología , Animales , Trastornos de los Cromosomas/genética , Hallux/patología , Humanos , Discapacidad Intelectual/genética , Ratones , Uñas Malformadas/genética , Fenotipo , Pulgar/patología , Disomía Uniparental/genética
10.
Endocrinology ; 160(12): 2863-2876, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31609444

RESUMEN

The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary. To address this issue, transgenic Notch reporter (TNR) mice were crossed with Sohlh1-mCherry (S1CF) transgenic mice to visualize Notch-active cells (EGFP) and germ cells (mCherry) simultaneously in the neonatal ovary. To test the involvement of oocytes in activation of Notch signaling in ovarian somatic cells, we ablated germ cells using busulfan, a chemotherapeutic alkylating agent, or investigated KitWv/Wv (viable dominant white-spotting) mice that lack most germ cells. The data reveal that Notch pathway activation in granulosa cells is significantly suppressed when germ cells are reduced. We further demonstrate that disruption of the gene for the Notch ligand Jag1 in oocytes similarly impacts Notch activation and that recombinant JAG1 enhances Notch target gene expression in granulosa cells. These data are consistent with the hypothesis that germ cells provide a ligand, such as Jag1, that is necessary for activation of Notch signaling in the developing ovary.


Asunto(s)
Células de la Granulosa/metabolismo , Proteína Jagged-1/metabolismo , Oocitos/metabolismo , Receptores Notch/metabolismo , Animales , Línea Celular , Femenino , Ratones , Ratones Transgénicos
11.
Endocrinology ; 159(1): 184-198, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126263

RESUMEN

The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína Jagged-1/metabolismo , Sistema de Señalización de MAP Quinasas , Receptor Notch2/agonistas , Receptor Notch3/agonistas , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Gonadotropina Coriónica/farmacología , Estradiol/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Gonadotropinas Equinas/farmacología , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/antagonistas & inhibidores , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína Jagged-1/antagonistas & inhibidores , Proteína Jagged-1/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos , Ratones Transgénicos , Progesterona/metabolismo , Interferencia de ARN , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Mol Endocrinol ; 28(4): 499-511, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24552588

RESUMEN

Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis. This coincides with a significant increase in the expression of the ligands, Jagged1 and Jagged2; the receptor, Notch2; and the target genes, Hes1 and Hey2. Histological examination of ovaries from mice with conditional deletion of Jagged1 within germ cells (J1 knockout [J1KO]) or Notch2 within granulosa cells (N2 knockout [N2KO]) reveals changes in follicle dynamics, including perturbations in the primordial follicle pool and antral follicle development. J1KO and N2KO ovaries also contain multi-oocytic follicles, which represent a failure to resolve germ cell syncytia, and follicles with enlarged oocytes but lacking somatic cell growth, signifying a potential role of Notch signaling in follicle activation and the coordination of follicle development. We also observed decreased cell proliferation and increased apoptosis in the somatic cells of both conditional knockout lines. As a consequence of these defects, J1KO female mice are subfertile; however, N2KO female mice remain fertile. This study demonstrates important functions for Jagged1 and Notch2 in the resolution of germ cell syncytia and the coordination of somatic and germ cell growth within follicles of the mouse ovary.


Asunto(s)
Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Receptor Notch2/metabolismo , Transducción de Señal , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Células Germinativas/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/metabolismo , Especificidad de Órganos , Folículo Ovárico/citología , Receptor Notch2/deficiencia , Proteínas Serrate-Jagged
13.
Biotechnol Bioeng ; 109(1): 213-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21830205

RESUMEN

Identifying the optimal treatment strategy for cancer is an important challenge, particularly for complex diseases like epithelial ovarian cancer (EOC) that are prone to recurrence. In this study we developed a quantitative, multivariate model to predict the extent of ovarian cancer cell death following treatment with an ErbB inhibitor (canertinib, CI-1033). A partial least squares regression model related the levels of ErbB receptors and ligands at the time of treatment to sensitivity to CI-1033. In this way, the model mimics the clinical problem by incorporating only information that would be available at the time of drug treatment. The full model was able to fit the training set data and was predictive. Model analysis demonstrated the importance of including both ligand and receptor levels in this approach, consistent with reports of the role of ErbB autocrine loops in EOC. A reduced multi-protein model was able to predict CI-1033 sensitivity of six distinct EOC cell lines derived from the three subtypes of EOC, suggesting that quantitatively characterizing the ErbB network could be used to broadly predict EOC response to CI-1033. Ultimately, this systems biology approach examining multiple proteins has the potential to uncover multivariate functions to identify subsets of tumors that are most likely to respond to a targeted therapy.


Asunto(s)
Antineoplásicos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Morfolinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Biología de Sistemas , Femenino , Humanos , Modelos Biológicos , Modelos Estadísticos
14.
Semin Cancer Biol ; 21(3): 200-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21511035

RESUMEN

Cancer is a complex and heterogeneous disease, demonstrating variations with respect to tumor types and between individual tumors. This heterogeneity has complicated the search for 'magic bullets'-individual genes or pathways that could be targeted and have beneficial effects for large numbers of patients. Instead, recent studies suggest that cancer can be more effectively analyzed through the use of systems biology techniques that examine multiple pathways and account for interactions between these pathways. In this review, we outline the various ways in which systems biology can be utilized to translate high-throughput data into a signaling network and then computationally analyze how cells make decisions based on the information flow through this network. We then discuss recent studies utilizing network-level analysis to reveal therapeutic targets, predict which tumors will be sensitive to existing drugs, and develop combinatorial therapies that target multiple pathways, demonstrating the potential for systems biology to revolutionize cancer therapy.


Asunto(s)
Transducción de Señal , Biología de Sistemas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...