Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
ACS Catal ; 14(17): 13136-13147, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39263544

RESUMEN

Design of catalysts for Ni-catalyzed olefin polymerization predominantly focuses on ligand design rather than the activation process when attempting to achieve a broader scope of polyolefin micro- and macrostructures. Air-stable alkyl-or aryl-functionalized NiII precatalysts were designed which eliminate the need of in situ alkylating processes and are activated solely by halide abstraction to generate the cationic complex for olefin polymerization. These complexes represent an emerging class of olefin polymerization catalysts, enabling the study of various cocatalysts forming either inner- or outer-sphere ion pairs. It is demonstrated that an organoboron cocatalyst activation produces a well-defined ion pair, which in contrast to ill-defined organoaluminum cocatalysts, can directly activate the complex by halide abstraction to yield comparatively higher molecular weight homo/copolymers. Under high ethylene pressure, broader branching densities and the gradual incorporation of short-chain branches were achieved, circumventing the need for elaborate ligand design and copolymerization with α-olefins. The underlying chain-walking mechanism and ion pair interactions were further elucidated by DFT calculations. A phenyl group on the bridging carbon functioned as a rotational barrier, producing higher molecular weight polymers compared to methyl-substituted analogs. Here, we provide a perspective to manipulate the iminopyridyl NiII system, leveraging ion pair interactions and ligand design to govern polyolefin molecular weights and microstructures.

2.
Cureus ; 16(8): e68206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39347323

RESUMEN

Taenia solium, the pig tapeworm, produces larvae that cause cysticercosis, a common parasitic disease of the human nervous system including the brain. The disease is native to countries like Central and South America, Eastern Europe, Africa, India, and Indonesia. Cysticercosis is endemic in North India, particularly in Bihar, Uttar Pradesh, and Punjab. Asymptomatic cysts may have a history of trauma, while lower extremity involvement is less common. Isolated muscle involvement typically has no lethal consequences. Two cases, both pediatric, were diagnosed with intramuscular cysticercosis without involvement of the brain parenchyma. The patients received oral prednisolone therapy for seven days, followed by albendazole for 28 days. The swellings decreased in size and no new swellings or symptoms appeared during the two- and four-week follow-ups. At a three-month follow-up, the swellings completely resolved. Neurocysticercosis is a commonly encountered infection of the human central nervous system and one of the major causes of acquired epilepsy globally. Most cases are asymptomatic and go undiagnosed, with the first case likely due to trauma. Diagnosis is often delayed or overlooked due to vague clinical symptoms. Clinical differential diagnoses for intramuscular cysticercosis include lipomas, epidermoid cysts, neuromas, neurofibromas, pseudoganglia, sarcomas, myxomas, pyomyositis, cold abscess, and tuberculous lymphadenitis. High-resolution ultrasound is the most accurate method for diagnosing intramuscular cysticercosis, as it is quick, simple, and less expensive. Muscular cysticercosis sonographic patterns can be categorized into four types: first degree, uneven, irregular, and calcified. Magnetic resonance imaging (MRI) is the most accurate way to diagnose intramuscular cysticercosis, as it can show live scolex, cysts, and degenerating cysts. In every case, there is edema to varied degrees, with fluid-filled lesions without peripheral enhancement visible in early stages and peripheral rim augmentation and perilesional edema observed in later stages.

3.
Small Methods ; : e2400443, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188200

RESUMEN

Biomolecular aggregates ensure the optimum concentration and proximity required for biochemical processes to take place. Synthetic aggregating systems are becoming increasingly essential to study/mimic dynamic condensates in nature. Herein the ratiometric DNA aggregation of self-assembled DNA constructs using lanthanide salts is reported. In addition, the aggregation is shown to be reversed by the addition of specific lanthanide-binding ligands. The aggregate formation is confirmed by dynamic light scattering experiment, electrophoretic mobility shift assay, and field emission scanning electron microscope. This programmed DNA aggregation and its reversion are applied to evaluating the lanthanide-DNA and lanthanide-ligand binding constants, respectively. To achieve this, Forster resonance energy transfer (FRET) pair dyes at the 3' or 5' end of the DNA strands are strategically placed that generate unique fluorescence patterns upon interaction with the DNA constructs and different triggers such as lanthanides/ligands/monovalent cations, thus enabling the tracking of various states of binding. It also demonstrates a "fast method" to form and stabilize G-quadruplex (GQ) using lanthanides which complements the existing slow formation of GQs with Na+/K+ ions. The formation of GQ by lanthanides is corroborated by FRET, circular dichroism (CD), and enzyme linked immunosorbent assay (ELISA) experiments. These DNA constructs, formed by lanthanides, have shown resistance to cleavage by DNase I, and distinctive binding to Protoporphyrin dyes and Thioflavin T.

4.
Chem Biodivers ; 21(7): e202400015, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705852

RESUMEN

More women die of breast cancer than of any other malignancy. The resistance and toxicity of traditional hormone therapy created an urgent need for potential molecules for treating breast cancer effectively. Novel biphenyl-substituted pyrazole chalcones linked to a pyrrolidine ring were designed by using a hybridization approach. The hybrids were assessed against MCF-7 and MDA-MB-231 cells by NRU assay. Among them, 8 k, 8 d, 8 m, 8 h, and 8 f showed significantly potent IC50 values: 0.17, 5.48, 8.13, 20.51, and 23.61 µM) respectively, on MCF-7 cells compared to the positive control Raloxifene and Tamoxifen. Furthermore, most active compound 8 k [3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-(2-(pyrrolidin-1-yl)-ethoxy)-phenyl)-chalcone] showed cell death induced through apoptosis, cell cycle arrest at the G2/M phase, and demonstrated decrease of ER-α protein in western blotting study. Docking studies of 8 k and 8 d established adequate interactions with estrogen receptor-α as required for SERM binding. The active hybrids exhibited good pharmacokinetic properties for oral bioavailability and drug-likeness. Whereas, RMSD, RMSF, and Rg values from Molecular dynamics studies stipulated stability of the complex formed between compound 8 k and receptor. All of these findings strongly indicate the antiproliferative potential of pyrazole-chalcone hybrids for the treatment of breast cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Pirazoles , Humanos , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Estructura Molecular , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química , Simulación del Acoplamiento Molecular , Chalcona/química , Chalcona/farmacología , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Animales , Ratas
5.
Cureus ; 16(2): e54808, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38529430

RESUMEN

T2-weighted hyperintensities in neuroimaging represent areas of heightened signal intensity on magnetic resonance imaging (MRI) scans, holding crucial importance in neuroimaging. This comprehensive review explores the T2-weighted hyperintensities, providing insights into their definition, characteristics, clinical relevance, and underlying causes. It highlights the significance of these hyperintensities as sensitive markers for neurological disorders, including multiple sclerosis, vascular dementia, and brain tumors. The review also delves into advanced neuroimaging techniques, such as susceptibility-weighted and diffusion tensor imaging, and the application of artificial intelligence and machine learning in hyperintensities analysis. Furthermore, it outlines the challenges and pitfalls associated with their assessment and emphasizes the importance of standardized protocols and a multidisciplinary approach. The review discusses future directions for research and clinical practice, including the development of biomarkers, personalized medicine, and enhanced imaging techniques. Ultimately, the review underscores the profound impact of T2-weighted hyperintensities in shaping the landscape of neurological diagnosis, prognosis, and treatment, contributing to a deeper understanding of complex neurological conditions and guiding more informed and effective patient care.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38185893

RESUMEN

BACKGROUND: Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS: Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger. RESULTS: In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 µM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 µM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 µM) against the reference drug, Cabozantinib (IC50 = 0.045 µM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study. CONCLUSION: The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.

7.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014299

RESUMEN

Infradian mood and sleep-wake rhythms with periods of 48 hr and beyond have been observed in bipolar disorder (BD) subjects that even persist in time isolation, indicating an endogenous origin. Here we show that mice exposed to methamphetamine (Meth) in drinking water develop infradian locomotor rhythms with periods of 48 hr and beyond which extend to sleep length and mania-like behaviors in support of a model for cycling in BD. This cycling capacity is abrogated upon genetic disruption of DA production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens (NAc) projecting, dopamine (DA) neurons. Chemogenetic activation of NAc-projecting DA neurons leads to locomotor period lengthening in clock deficient mice, while cytosolic calcium in DA processes of the NAc was found fluctuating synchronously with locomotor behavior. Together, our findings argue that BD cycling relies on infradian rhythm generation that depends on NAc-projecting DA neurons.

8.
Anticancer Agents Med Chem ; 23(18): 2042-2055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455449

RESUMEN

BACKGROUND: In cancer, Receptor tyrosine kinases (RTKs) are powerful oncoproteins that can lead to uncontrolled cell proliferation, angiogenesis, and metastasis when mutated or overexpressed, making them crucial targets for cancer treatment. In endothelial cells, one of them is vascular endothelial growth factor receptor 2 (VEGFR2), a tyrosine kinase receptor that is produced and is the most essential regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new N-(4-(4-amino-6,7-dimethoxyquinazolin-2-yloxy)phenyl)-N-phenyl cyclopropane-1,1- dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS: The designed derivatives were synthesized and evaluated using H-NMR, C13-NMR, and Mass spectroscopy. The cytotoxicity was done with HT-29 and COLO-205 cell lines. The potent compound was further studied for Vegfr- 2 kinase inhibition assay. Furthermore, the highest activity compound was tested for cell cycle arrest and apoptosis. The molecular docking investigation was also done with the help of the Glide-7.6 program interfaced with Maestro- 11.3 of Schrodinger 2017. The molecular dynamics simulation was performed on the Desmond module of Schrodinger. RESULTS: Compound SQ2 was observed to have promising cytotoxic activity (IC50 = 3.38 and 10.55 µM) in comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 µM) against HT-29 and COLO-205, respectively. The synthesized compound SQ2 showed VEGFR-2 kinase inhibition activity (IC50 = 0.014 µM) compared to the reference drug, Cabozantinib (IC50 = 0.0045 µM). Moreover, compound SQ2 strongly induced apoptosis by arresting the cell cycle in the G1 and G2/M phases. The docking study was performed to understand the binding pattern of the new compounds to the VEGFR-2 active site. Docking results attributed the potent VEGFR-2 inhibitory effect of the new compounds as they bound to the key amino acids in the active site, Asp1044, and Glu883, as well as their hydrophobic interaction with the receptor's hydrophobic pocket. The advanced computational study was also done with the help of molecular dynamics simulation. CONCLUSION: The findings show that the developed derivatives SQ2 and SQ4 are equally powerful as cabozantinib at cellular and enzymatic levels. The apoptosis and cell cycle results show that the proposed compounds are potent. This research has provided us with identical or more potent VEGFR-2 inhibitors supported by the results of docking studies, molecular dynamics simulation, cytotoxic actions, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest.

9.
J Hazard Mater ; 459: 132000, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37473571

RESUMEN

The presence of exorbitant arsenic contamination in the aquatic environment causes astronomically immense health quandaries affecting millions of people, which may lead to death in the case of prolonged indigestion of arsenic-containing drinking water. Herein, we are reporting porous chelating resin with an iron precursor for the removal of arsenic ions from water. Weak acid cation resin was functionalized under varying experimental conditions to get a suitable resin with high arsenic uptake. The theoretical results revealed that the maximum Langmuir adsorption capacities of 3.27 mg g-1 and 1.13 mg g-1 were achieved for As(V) and As(III), respectively. The kinetics of adsorption followed the pseudo-second-order (PSO) model with a high determination coefficient (R2) of 0.9963 and 0.9895 for As(V) and As(III), respectively. The Adams-Bohart, Thomas, Yoon-Nelson, and Pore diffusion models were used to identify the breakthrough curve in the fixed bed adsorption column. The column performance improved with a larger bed height (55 cm), low concentration of influent (0.25 mg L-1), and low flow rate of influent (80 mL min-1). Under this condition, the breakthrough time and exhaustion time were 314 min and 408 min for As(V) and 124 min and 185 min for As(III), respectively.

10.
Soft Matter ; 19(23): 4188-4203, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37266565

RESUMEN

The advent of atomic force microscopy, along with optical tweezers, ushered in a new field of single molecule force spectroscopy, wherein the response of a single protein or a macromolecule to external mechanical perturbations is measured. Controlled forces ranging from pN to nN are applied to measure the unfolding force distribution of a single protein domain. In a clamp type experiment, the folded protein is subjected to a constant force to measure the unfolding time distribution. Simultaneously, there were efforts to measure the elastic and viscous response of a single domain by applying sinusoidal forces and measuring the resulting deformations produced in a bid to quantify its viscoelasticity. The deformation's phase lag with respect to the applied force provides the elastic and viscous response of the protein, akin to oscillatory rheology. Despite numerous technical advances in AFM, an artefact-free measurement of a folded protein's viscoelasticity largely remains a challenge. In this perspective, we review efforts to measure the viscoelasticity of proteins using dynamic AFM, identifying pitfalls that make these measurements elusive. Finally, we discuss a new promising method, which reported viscoelasticity of a folded protein and its implications for our understanding of protein dynamics and structural flexibility.


Asunto(s)
Fenómenos Mecánicos , Proteínas , Microscopía de Fuerza Atómica/métodos , Proteínas/química
12.
Cureus ; 15(2): e35075, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36942180

RESUMEN

Rib caries with a cold abscess is a rare presentation of tuberculosis (TB) and is tricky to diagnose. It is rarer in young patients, especially in conjunction with active miliary TB. We present one such case of a 23-year-old male patient who presented with swelling over the left lower chest. Rib caries and cold abscess were initially detected by ultrasonography and elastography. The rib involvement and the extent of the cold abscess were further evaluated on a computed tomography scan, which also showed active pulmonary miliary TB. The patient was treated by aspiration of the cold abscess and anti-tuberculosis therapy. The fact that the patient had no history of diabetes, alcoholism, human immunodeficiency virus infection, or immunodeficiency disorder increases the rarity of this case. This case highlights the role of imaging in diagnosing rib caries, cold abscess, and miliary TB.

13.
Drug Discov Today ; 28(5): 103557, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934967

RESUMEN

KRASG12C has been identified as a potential target in the treatment of solid tumors. One of the most often transformed proteins in human cancers is the small Kirsten rat sarcoma homolog (KRAS) subunit of GTPase, which is typically the oncogene driver. KRASG12C is altered to keep the protein in an active GTP-binding form. KRAS has long been considered an 'undrugable' target, but sustained research efforts focusing on the KRASG12C mutant cysteine have achieved promising results. For example, the US Food and Drug Administration (FDA) has passed emergency approval for sotorasib and adagrasib for the treatment of metastatic lung cancer. Such achievements have sparked several original approaches to KRASG12C. In this review, we focus on the design, development, and history of KRASG12C inhibitors.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Estados Unidos , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Cisteína , United States Food and Drug Administration , Mutación
15.
Proteomics Clin Appl ; 17(2): e2200063, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189891

RESUMEN

PURPOSE: Chronic kidney disease (CKD) is defined by a reduced renal function, that is, glomerular filtration rate, and the extent of kidney damage is assessed by determining serum creatinine levels and proteins in urine, diagnosed as proteinuria/albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush border membranes (BBMs) on PT cells are important in maintaining the stability of PT functions. EXPERIMENTAL DESIGN: An LC-MS/MS bottom-up proteomics analysis of BBMs from four groups of rat models was applied to investigate protein abundance alterations associated with CKD progression. Moreover, systems biology analyses were used to identify key proteins that can provide insight into the different regulated molecular pathways and processes associated with CKD. RESULTS: Our results indicated that 303 proteins showed significantly altered expressions from the severe CKD BBM group when compared to the control. Focusing on renal diseases, several proteins including Ctnnb1, Fah, and Icam1 were annotated to kidney damage and urination disorder. The up-regulation of Ctnnb1 (ß-catenin) could contribute to CKD through the regulation of the WNT signaling pathway. CONCLUSION AND CLINICAL RELEVANCE: Overall, the study of protein abundance changes in BBMs from rat models helps to reveal protein corrections with important pathways and regulator effects involved in CKD. Although this study is focused on rat models, the results provided more information for a deeper insight into possible CKD mechanisms in humans.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Humanos , Ratas , Animales , Albuminuria/complicaciones , Albuminuria/diagnóstico , Microvellosidades , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Riñón/metabolismo
16.
J Am Chem Soc ; 144(48): 22113-22127, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36383403

RESUMEN

Accelerating catalytic chemistry and tuning surface reactions require precise control of the electron density of metal atoms. In this work, nanoclusters of platinum were supported on a graphene sheet within a catalytic condenser device that facilitated electron or hole accumulation in the platinum active sites with negative or positive applied potential, respectively. The catalytic condenser was fabricated by depositing on top of a p-type Si wafer an amorphous HfO2 dielectric (70 nm), on which was placed the active layer of 2-4 nm platinum nanoclusters on graphene. A potential of ±6 V applied to the Pt/graphene layer relative to the silicon electrode moved electrons into or out of the active sites of Pt, attaining charge densities more than 1% of an electron or hole per surface Pt atom. At a level of charge condensation of ±10% of an electron per surface atom, the binding energy of carbon monoxide to a Pt(111) surface was computed via density functional theory to change 24 kJ mol-1 (0.25 eV), which was consistent with the range of carbon monoxide binding energies determined from temperature-programmed desorption (ΔBECO of 20 ± 1 kJ mol-1 or 0.19 eV) and equilibrium surface coverage measurements (ΔBECO of 14 ± 1 kJ mol-1 or 0.14 eV). Impedance spectroscopy indicated that Pt/graphene condensers with potentials oscillating at 3000 Hz exhibited negligible loss in capacitance and charge accumulation, enabling programmable surface conditions at amplitudes and frequencies necessary to achieve catalytic resonance.

17.
J Phys Chem Lett ; 13(40): 9473-9479, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198174

RESUMEN

The nanomechanical response of a folded single protein, the natural nanomachine responsible for myriad biological processes, provides insight into its function. The conformational flexibility of a folded state, characterized by its viscoelasticity, allows proteins to adopt different shapes to perform their function. Despite efforts, its direct measurement has not been possible so far. We present a direct and simultaneous measurement of the stiffness and internal friction of the folded domains of the protein titin using a special interferometer based atomic force microscope. We analyzed the data by carefully separating different contributions affecting the response of the experimental probe to obtain the folded state's viscoelasticity. Above ∼95 pN of force, the individual immunoglobulins of titin transition from an elastic solid-like native state to a soft viscoelastic intermediate.


Asunto(s)
Inmunoglobulinas , Proteínas Musculares , Conectina , Elasticidad , Fricción , Proteínas Musculares/fisiología
18.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35378997

RESUMEN

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Asunto(s)
Albúminas , Túbulos Renales Proximales , Albúminas/metabolismo , Transporte Biológico , Endocitosis/fisiología , Humanos , Túbulos Renales Proximales/metabolismo
19.
Nanomaterials (Basel) ; 12(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35159871

RESUMEN

We estimate the elasticity of single polymer chains using atomic force microscope (AFM)-based oscillatory experiments. An accurate estimate of elasticity using AFM is limited by assumptions in describing the dynamics of an oscillating cantilever. Here, we use a home-built fiber-interferometry-based detection system that allows a simple and universal point-mass description of cantilever oscillations. By oscillating the cantilever base and detecting changes in cantilever oscillations with an interferometer, we extracted stiffness versus extension profiles for polymers. For polyethylene glycol (PEG) in a good solvent, stiffness-extension data showed significant deviation from conventional force-extension curves (FECs) measured in constant velocity pulling experiments. Furthermore, modeling stiffness data with an entropic worm-like chain (WLC) model yielded a persistence length of (0.5 ± 0.2 nm) compared to anomaly low value (0.12 nm ± 0.01) in conventional pulling experiments. This value also matched well with equilibrium measurements performed using magnetic tweezers. In contrast, polystyrene (PS) in a poor solvent, like water, showed no deviation between the two experiments. However, the stiffness profile for PS in good solvent (8M Urea) showed significant deviation from conventional force-extension curves. We obtained a persistence length of (0.8 ± 0.2 nm) compared to (0.22 nm ± 0.01) in pulling experiments. Our unambiguous measurements using interferometer yield physically acceptable values of persistence length. It validates the WLC model in good solvents but suggests caution for its use in poor solvents.

20.
PeerJ Comput Sci ; 8: e789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35111906

RESUMEN

A large range of applications have been identified based upon the communication of underground sensors deeply buried in the soil. The classical electromagnetic wave (EM) approach, which works well for terrestrial communication in air medium, when applied for this underground communication, suffers from significant challenges attributing to signal absorption by rocks, soil, or water contents, highly varying channel condition caused by soil characteristics, and requirement of big antennas. As a strong alternative of EM, various magnetic induction (MI) techniques have been introduced. These techniques basically depend upon the magnetic induction between two coupled coils associated with transceiver sensor nodes. This paper elaborates on three basic MI communication mechanisms i.e. direct MI transmission, MI waveguide transmission, and 3D coil MI communication with detailed discussion of their working mechanism, advantages and limitations. The comparative analysis of these MI techniques with each other as well as with EM wave method will facilitate the users in choosing the best method to offer enhanced transmission range (upto 250 m), reduced path loss (<100 dB), channel reliability, working bandwidth (1-2 kHz), & omni-directional coverage to realize the promising MI-based wireless underground sensor network (WUSN) applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...