Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Phys Rev Lett ; 126(21): 217202, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114835

RESUMEN

CeIrSn with a quasikagome Ce lattice in the hexagonal basal plane is a strongly valence fluctuating compound, as we confirm by hard x-ray photoelectron spectroscopy and inelastic neutron scattering, with a high Kondo temperature of T_{K}∼480 K. We report a negative in-plane thermal expansion α/T below 2 K, which passes through a broad minimum near 0.75 K. Volume and a-axis magnetostriction for B∥a are markedly negative at low fields and change sign before a sharp metamagnetic anomaly at 6 T. These behaviors are unexpected for Ce-based intermediate valence systems, which should feature positive expansivity. Rather they point towards antiferromagnetic correlations at very low temperatures. This is supported by muon spin relaxation measurements down to 0.1 K, which provide microscopic evidence for a broad distribution of internal magnetic fields. Comparison with isostructural CeRhSn suggests that these antiferromagnetic correlations emerging at T≪T_{K} result from geometrical frustration.

3.
J Phys Condens Matter ; 32(30): 305801, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217832

RESUMEN

We report multiple magnetic phase transitions and critical behavior of the 2D charge-density wave compound TbTe3 studied by µSR measurements and dc magnetization measurements. Zero-field µSR has shown three magnetic transitions below 7 K. The longitudinal field measurements under 50 G has confirmed the first transition at T N = 6.3 K. Scaling analysis from above T N gives the critical exponent w = 0.63(5), suggesting the Ising 3D antiferromagnetic nature of the ordering, which is likely mediated by the 2D correlations. However, the obtained w = 0.81(5) below T N indicates the ferromagnetic phase, which arises over the multiphase transitions at lower temperatures. Temperature-dependent transverse frequency shift gives a relatively smaller exponent γ = 1.0(1) than the Ising 3D model. The different transitions were also observed by dc magnetization measurements, suggesting two magnetic transitions at 7.4 K and 3.1 K, which correspond to the antiferromagnetic and ferromagnetic phases respectively.

4.
J Phys Condens Matter ; 31(39): 394002, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31239417

RESUMEN

We present the results of muon-spin relaxation ([Formula: see text]SR) measurements on antiferromagnetic and ferromagnetic spin chains. In antiferromagnetic CuF2(pyz) we identify a transition to long range magnetic order taking place at [Formula: see text] K, allowing us to estimate a ratio with the intrachain exchange of [Formula: see text] and the ratio of interchain to intrachain exchange coupling as [Formula: see text]. The ferromagnetic chain [Sm(hfac)3(boaDTDA)] n undergoes an ordering transition at [Formula: see text] K, seen via a broad freezing of dynamic fluctuations on the muon (microsecond) timescale and implying [Formula: see text]. The ordered radical moment continues to fluctuate on this timescale down to 0.3 K, while the Sm moments remain disordered. In contrast, the radical spins in [La(hfac)3(boaDTDA)] n remain magnetically disordered down to T = 0.1 K suggesting [Formula: see text].

5.
J Phys Condens Matter ; 31(28): 285803, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-30933932

RESUMEN

We present the results of x-ray scattering and muon-spin relaxation ([Formula: see text]SR) measurements on the iron-pnictide compound FeCrAs. Polarized non-resonant magnetic x-ray scattering results reveal the 120° periodicity expected from the suggested three-fold symmetric, non-collinear antiferromagnetic structure. [Formula: see text]SR measurements indicate a magnetically ordered phase throughout the bulk of the material below [Formula: see text] K. There are signs of fluctuating magnetism in a narrow range of temperatures above [Formula: see text] involving low-energy excitations, while at temperatures well below [Formula: see text] behaviour characteristic of freezing of dynamics is observed, likely reflecting the effect of disorder in our polycrystalline sample. Using density functional theory we propose a distinct muon stopping site in this compound and assess the degree of distortion induced by the implanted muon.

6.
Sci Rep ; 7(1): 123, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28273923

RESUMEN

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.

7.
J Phys Condens Matter ; 29(8): 085405, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28095369

RESUMEN

The transition taking place between two metastable phases in 2-O-adamantane, namely the [Formula: see text] cubic, rotator phase and the lower temperature P21/c, Z = 4 substitutionally disordered crystal is studied by means of muon spin rotation and relaxation techniques. Measurements carried out under zero, weak transverse and longitudinal fields reveal a temperature dependence of the relaxation parameters strikingly similar to those exhibited by structural glass[Formula: see text]liquid transitions (Bermejo et al 2004 Phys. Rev. B 70 214202; Cabrillo et al 2003 Phys. Rev. B 67 184201). The observed behaviour manifests itself as a square root singularity in the relaxation rates pointing towards some critical temperature which for amorphous systems is located some tens of degrees above that shown as the characteristic transition temperature if studied by thermodynamic means. The implications of such findings in the context of current theoretical approaches concerning the canonical liquid-glass transition are discussed.

8.
Nat Mater ; 16(4): 467-473, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27941808

RESUMEN

Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-µSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

9.
Phys Rev Lett ; 114(1): 017602, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615502

RESUMEN

Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials.

10.
Phys Rev Lett ; 110(21): 216602, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745907

RESUMEN

Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials.

11.
Phys Rev Lett ; 110(10): 107005, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23521285

RESUMEN

The low-field phase of the organic superconductor (TMTSF)(2)ClO(4) is studied by muon-spin rotation. The zero temperature limit of the magnetic penetration depth within the TMTSF layers is obtained to be λ(ab)(0) = 0.86(2) µm. Temperature dependence of the muon-spin relaxation shows no indication of gap nodes on the Fermi surface nor of any spontaneous fields due to time-reversal-symmetry breaking. The weight of evidence suggests that the symmetry of this low-field phase is odd-frequency p-wave singlet, a novel example of odd-frequency pairing in a bulk superconductor.

12.
Rev Sci Instrum ; 82(7): 073904, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21806196

RESUMEN

The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

13.
J Phys Condens Matter ; 23(24): 242201, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21628784

RESUMEN

We have observed an electronic energy level crossing in a molecular nanomagnet (MNM) using muon spin relaxation. This effect, not observed previously despite several muon studies of MNM systems, provides further evidence that the spin relaxation of the implanted muon is sensitive to the dynamics of the electronic spin. Our measurements on a broken ring MNM [H(2)N(t)Bu(is)Pr][Cr(8)CdF(9)(O(2)CC(CH(3))(3))(18)], which contains eight Cr ions, show clear evidence for the S = 0 --> S = 1 transition that takes place at B(c) = 2.3 T. The crossing is observed as a resonance-like dip in the average positron asymmetry and also in the muon spin relaxation rate, which shows a sharp increase in magnitude at the transition and a peak centred within the S = 1 regime.


Asunto(s)
Magnetismo/instrumentación , Mesones , Modelos Químicos , Nanotecnología/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales
14.
Nature ; 471(7340): 612-6, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21455176

RESUMEN

A quantum spin-liquid phase is an intriguing possibility for a system of strongly interacting magnetic units in which the usual magnetically ordered ground state is avoided owing to strong quantum fluctuations. It was first predicted theoretically for a triangular-lattice model with antiferromagnetically coupled S = 1/2 spins. Recently, materials have become available showing persuasive experimental evidence for such a state. Although many studies show that the ideal triangular lattice of S = 1/2 Heisenberg spins actually orders magnetically into a three-sublattice, non-collinear 120° arrangement, quantum fluctuations significantly reduce the size of the ordered moment. This residual ordering can be completely suppressed when higher-order ring-exchange magnetic interactions are significant, as found in nearly metallic Mott insulators. The layered molecular system κ-(BEDT-TTF)(2)Cu(2)(CN)(3) is a Mott insulator with an almost isotropic, triangular magnetic lattice of spin-1/2 BEDT-TTF dimers that provides a prime example of a spin liquid formed in this way. Despite a high-temperature exchange coupling, J, of 250 K (ref. 6), no obvious signature of conventional magnetic ordering is seen down to 20 mK (refs 7, 8). Here we show, using muon spin rotation, that applying a small magnetic field to this system produces a quantum phase transition between the spin-liquid phase and an antiferromagnetic phase with a strongly suppressed moment. This can be described as Bose-Einstein condensation of spin excitations with an extremely small spin gap. At higher fields, a second transition is found that suggests a threshold for deconfinement of the spin excitations. Our studies reveal the low-temperature magnetic phase diagram and enable us to measure characteristic critical properties. We compare our results closely with current theoretical models, and this gives some further insight into the nature of the spin-liquid phase.

15.
Nat Mater ; 10(1): 39-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21131962

RESUMEN

Spintronics has shown a remarkable and rapid development, for example from the initial discovery of giant magnetoresistance in spin valves to their ubiquity in hard-disk read heads in a relatively short time. However, the ability to fully harness electron spin as another degree of freedom in semiconductor devices has been slower to take off. One future avenue that may expand the spintronic technology base is to take advantage of the flexibility intrinsic to organic semiconductors (OSCs), where it is possible to engineer and control their electronic properties and tailor them to obtain new device concepts. Here we show that we can control the spin polarization of extracted charge carriers from an OSC by the inclusion of a thin interfacial layer of polar material. The electric dipole moment brought about by this layer shifts the OSC highest occupied molecular orbital with respect to the Fermi energy of the ferromagnetic contact. This approach allows us full control of the spin band appropriate for charge-carrier extraction, opening up new spintronic device concepts for future exploitation.

16.
Phys Rev Lett ; 102(8): 087002, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19257777

RESUMEN

Substantial control of the interlayer spacing in Bi-based high temperature superconductors has been achieved through the intercalation of guest molecules between the superconducting layers. Measurements using implanted muons reveal that the penetration depth increases with increasing layer separation while T_{c} does not vary appreciably, demonstrating that the bulk superfluid density is not the determining factor controlling T_{c}. Our results strongly suggest that for Bi-based high temperature superconductors the superfluid density appearing in the Uemura scaling relation rho_{s} proportional, variantT_{c} should be interpreted as the two-dimensional density within the superconducting layers, which we find to be constant for each class of system investigated.

17.
Nat Mater ; 8(4): 310-4, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19234446

RESUMEN

The recent observation of superconductivity with critical temperatures (Tc) up to 55 K in the pnictide RFeAsO(1-x)F(x), where R is a lanthanide, marks the first discovery of a non-copper-oxide-based layered high-Tc superconductor. It has raised the suspicion that these new materials share a similar pairing mechanism to the cuprate superconductors, as both families exhibit superconductivity following charge doping of a magnetic parent material. In this context, it is important to follow the evolution of the microscopic magnetic properties of the pnictides with doping and hence to determine whether magnetic correlations coexist with superconductivity. Here, we present a muon spin rotation study on SmFeAsO(1-x)F(x), with x=0-0.30 that shows that, as in the cuprates, static magnetism persists well into the superconducting regime. This analogy is quite surprising as the parent compounds of the two families have rather different magnetic ground states: itinerant spin density wave for the pnictides contrasted with the Mott-Hubbard insulator in the cuprates. Our findings therefore suggest that the proximity to magnetic order and associated soft magnetic fluctuations, rather than strong electronic correlations in the vicinity of a Mott-Hubbard transition, may be the key ingredients of high-Tc superconductors.

18.
Nat Mater ; 8(2): 109-14, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19029892

RESUMEN

Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance.

19.
J Phys Condens Matter ; 21(34): 346004, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21715794

RESUMEN

We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

20.
Phys Rev Lett ; 101(9): 097010, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18851648

RESUMEN

Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...