RESUMEN
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
RESUMEN
The research introduces a novel method for creating drug-loaded hydrogel beads that target anti-aging, anti-oxidative, and anti-inflammatory effects, addressing the interconnected processes underlying various pathological conditions. The study focuses on the development of hydrogel beads containing anti-aging compounds, antioxidants, and anti-inflammatory drugs to effectively mitigate various processes. The synthesis, characterization and in vitro evaluations, and potential applications of these multifunctional hydrogel beads are discussed. A polymeric alginate-orange peel extract (1:1) hydrogel was synthesized for encapsulating fish oil. Beads prepared with variable fish oil concentrations (0.1, 0.3, and 0.5 ml) were characterized, showing no significant decrease in size i.e., 0.5 mm and a reduction in pore size from 23 to 12 µm. Encapsulation efficiency reached up to 98% within 2 min, with controlled release achieved upto 45 to 120 min with increasing oil concentration, indicating potential for sustained delivery. Fourier-transform infrared spectroscopy confirmed successful encapsulation by revealing peak shifting, interaction between constituents. In vitro degradation studies showed the hydrogel's biodegradability improved from 30 to 120 min, alongside anti-inflammatory, anti-oxidative, anti-collagenase and anti-elastase activities, cell proliferation rate enhanced after entrapping fish oil. In conclusion, the synthesized hydrogel beads are a promising drug delivery vehicle because they provide stable and effective oil encapsulation with controlled release for notable anti-aging and regenerative potential. Targeted delivery for inflammatory and oxidative stress-related illnesses is one set of potential uses. Further research may optimize this system for broader applications in drug delivery and tissue engineering.
Asunto(s)
Alginatos , Antioxidantes , Aceites de Pescado , Hidrogeles , Alginatos/química , Aceites de Pescado/química , Hidrogeles/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Envejecimiento/efectos de los fármacos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Microesferas , RatonesRESUMEN
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
RESUMEN
Earth's freshwater reserves are alarmingly limited, with less than 1% readily available. Factors such as industrialisation, population expansion, and climate change are compounding the scarcity of clean water. In this context, self-driven, programmable micro- and nano-scale synthetic robots offer a potential solution for enhancing water monitoring and remediation. With the aid of these innovative robots, diffusion-limited reactions can be overcome, allowing for active engagement with target pollutants, such as heavy metals, dyes, nano- and micro-plastics, oils, pathogenic microorganisms, and persistent organic pollutants. Herein, we introduced and reviewed recent influential and advanced studies on micro-/nano-robots (MNR) carried out over the past decade. Typical works are categorized by propulsion modes, analyzing their advantages and drawbacks in detail and looking at specific applications. Moreover, this review provides a concise overview of the contemporary advancements and applications of micro-/nano-robots in water-cleaning applications.
RESUMEN
Ovarian cancers (OC) are the most common, lethal, and stage-dependent cancers at the global level, specifically in female patients. Targeted therapies involve the administration of drugs that specifically target the alterations in tumour cells responsible for their growth, proliferation, and metastasis, with the aim of treating particular patients. Presently, within the realm of gynaecological malignancies, specifically in breast and OCs, there exist various prospective therapeutic targets encompassing tumour-intrinsic signalling pathways, angiogenesis, homologous-recombination deficit, hormone receptors, and immunologic components. Breast cancers are often detected in advanced stages, primarily due to the lack of a reliable screening method. However, various tumour markers have been extensively researched and employed to evaluate the condition, progression, and effectiveness of medication treatments for this ailment. The emergence of recent technological advancements in the domains of bioinformatics, genomics, proteomics, and metabolomics has facilitated the exploration and identification of hitherto unknown biomarkers. The primary objective of this comprehensive review is to meticulously investigate and analyze both established and emerging methodologies employed in the identification of tumour markers associated with OC.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Ováricas , Humanos , Femenino , Biomarcadores de Tumor/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Terapia Molecular DirigidaRESUMEN
Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnosticâmoreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.
Asunto(s)
Antineoplásicos , Neoplasias , Zeína , Humanos , Portadores de Fármacos/uso terapéutico , Zeína/química , Sistemas de Liberación de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéuticoRESUMEN
Current research endeavours are progressively focussing towards discovering sustainable methods for synthesising eco-friendly materials. In this environment, nanotechnology has emerged as a key frontier, especially in bioremediation and biotechnology. A few areas of nanotechnology including membrane technology, sophisticated oxidation processes, and biosensors. It is possible to create nanoparticles (NPs) via physical, chemical, or biological pathways in a variety of sizes and forms. These days, the investigation of plants as substitutes for NP synthesis methods has drawn a lot of interest. Toxic water contaminants such as methyl blue have been shown to be removed upto 70% by nanoparticles. In our article, we aimed at focussing the environmental sustainability and cost-effectiveness towards the green synthesis of nanoparticles. Furthermore it offers a comprehensive thorough summary of green NP synthesis methods which can be distinguished by their ease of use, financial sustainability, and environmentally favourable utilization of plant extracts. This study highlights how green synthesis methods have the potential to transform manufacturing of NPs while adhering to environmental stewardship principles and resource efficiency.
RESUMEN
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
RESUMEN
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanotecnología , Biopolímeros/uso terapéuticoRESUMEN
Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aß peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).
RESUMEN
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Medicina de Precisión , Ligandos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanomedicina , Portadores de Fármacos , Antineoplásicos/uso terapéuticoRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.
Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Levodopa/uso terapéutico , LípidosRESUMEN
The global outgoing outbreaks of Ebola virus disease (EVD) in different regions of Sudan, Uganda, and Western Africa have brought into focus the inadequacies and restrictions of pre-designed vaccines for use in the battle against EVD, which has affirmed the urgent need for the development of a systematic protocol to produce Ebola vaccines prior to an outbreak. There are several vaccines available being developed by preclinical trials and human-based clinical trials. The group of vaccines includes virus-like particle-based vaccines, DNA-based vaccines, whole virus recombinant vaccines, incompetent replication originated vaccines, and competent replication vaccines. The limitations and challenges faced in the development of Ebola vaccines are the selection of immunogenic, rapid-responsive, cross-protective immunity-based vaccinations with assurances of prolonged protection. Another issue for the manufacturing and distribution of vaccines involves post authorization, licensing, and surveillance to ensure a vaccine's efficacy towards combating the Ebola outbreak. The current review focuses on the development process, the current perspective on the development of an Ebola vaccine, and future challenges for combatting future emerging Ebola infectious disease.
RESUMEN
Water scarcity due to contamination of water resources with different inorganic and organic contaminants is one of the foremost global concerns. It is due to rapid industrialization, fast urbanization, and the low efficiency of traditional wastewater treatment strategies. Conventional water treatment strategies, including chemical precipitation, membrane filtration, coagulation, ion exchange, solvent extraction, adsorption, and photolysis, are based on adopting various nanomaterials (NMs) with a high surface area, including carbon NMs, polymers, metals-based, and metal oxides. However, significant bottlenecks are toxicity, cost, secondary contamination, size and space constraints, energy efficiency, prolonged time consumption, output efficiency, and scalability. On the contrary, green NMs fabricated using microorganisms emerge as cost-effective, eco-friendly, sustainable, safe, and efficient substitutes for these traditional strategies. This review summarizes the state-of-the-art microbial-assisted green NMs and strategies including microbial cells, magnetotactic bacteria (MTB), bio-augmentation and integrated bioreactors for removing an extensive range of water contaminants addressing the challenges associated with traditional strategies. Furthermore, a comparative analysis of the efficacies of microbe-assisted green NM-based water remediation strategy with the traditional practices in light of crucial factors like reusability, regeneration, removal efficiency, and adsorption capacity has been presented. The associated challenges, their alternate solutions, and the cutting-edge prospects of microbial-assisted green nanobiotechnology with the integration of advanced tools including internet-of-nano-things, cloud computing, and artificial intelligence have been discussed. This review opens a new window to assist future research dedicated to sustainable and green nanobiotechnology-based strategies for environmental remediation applications.
RESUMEN
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Óxido de Zinc , Óxidos/toxicidad , Cobre , Plata , Especies Reactivas de Oxígeno , Óxido de Magnesio , Dióxido de Silicio , Nanopartículas del Metal/toxicidad , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Citocinas , Extractos Vegetales/farmacologíaRESUMEN
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.