Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398840

RESUMEN

Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.


Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Tipo 2 , Hígado Graso , Estado Prediabético , Ratas , Masculino , Animales , Ratones , Estado Prediabético/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Ratas Wistar , Hígado/metabolismo , Hígado Graso/metabolismo , Obesidad/metabolismo , Suplementos Dietéticos , Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos/farmacología , Autofagia , Ratones Endogámicos C57BL
2.
Arch Toxicol ; 97(10): 2643-2657, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37594589

RESUMEN

Silver nanoparticles (AgNP) are among the most widely commercialized nanomaterials globally, with applications in medicine and the food industry. Consequently, the increased use of AgNP in the food industry has led to an unavoidable rise  in human exposure to these nanoparticles. Their widespread use raises concerns about potential hazards to human health, specifically their intestinal pro-inflammatory effects. Thus, the main objective of this study was to evaluate the biological effects of two subacute doses of 5 nm polyvinylpyrrolidone (PVP)-AgNP in C57BL/6J mice. One mg/kg body weight or 10 mg/kg bw was provided once a day for 14 days, using a new technology (HaPILLness) that allows voluntary, stress-free, and accurate oral dosing. It was observed that after oral ingestion, while AgNP is biodistributed throughout the entire organism, most of the ingested dose is excreted in the feces. The passage and accumulation of AgNP throughout the intestine instigated a prominent inflammatory response, marked by significant histological, vascular, and cellular transformations. This response was driven by the activation of the nuclear factor-кB (NF-кB) inflammatory pathway, ultimately leading to the generation of multiple cytokines and chemokines.


Asunto(s)
Nanopartículas del Metal , Ratones , Humanos , Animales , Ratones Endogámicos C57BL , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Distribución Tisular , Intestinos
4.
Inflamm Res ; 71(5-6): 591-602, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35471601

RESUMEN

BACKGROUND: Inflammation is a common feature in the pathogenesis of chronic kidney disease (CKD), regardless of the disease cause. Our aim was to evaluate the potential of several inflammatory biomarkers in CKD diagnosis and staging. METHODS: A total of 24 healthy controls and 92 pre-dialysis CKD patients with diverse etiologies, were enrolled in this study and grouped according to their CKD stage. We analysed the circulating levels of inflammatory molecules, C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 2 (TNFR2), pentraxin 3 (PTX3) and leptin, as well as the hemogram. We studied their association with parameters of kidney function and kidney injury, to evaluate their potential as early markers of the disease and/or of its worsening, as well as their interplay. RESULTS: Compared to controls, patients in CKD stages 1-2 presented significantly higher IL-6 and TNFR2 levels, and higher neutrophil-to-lymphocyte ratio. All inflammatory cytokines and acute-phase proteins showed a trend to increase up to stage 3, stabilizing or declining thereafter, save for TNFR2, which steadily increased from stage to stage. All inflammatory molecules, apart from PTX3, were negatively and significantly correlated with eGFR, with a remarkable value for TNFR2 (r = - 0.732, p < 0.001). CONCLUSION: TNFR2 might be useful for an early detection of CKD, as well as for disease staging/worsening. Still, the potential value of this biomarker in disease progression warrants further investigation.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral , Insuficiencia Renal Crónica , Biomarcadores/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Insuficiencia Renal Crónica/metabolismo
5.
Pharmacol Res ; 180: 106151, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35247601

RESUMEN

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Asunto(s)
Cardiomiopatías , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Animales , Conexina 43 , Modelos Animales de Enfermedad , Eucaliptol/uso terapéutico , Ventrículos Cardíacos/metabolismo , Homeostasis , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertrofia Ventricular Derecha/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Disfunción Ventricular Derecha/metabolismo
6.
Nutrients ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959746

RESUMEN

The paramount importance of a healthy diet in the prevention of type 2 diabetes is now well recognized. Blueberries (BBs) have been described as attractive functional fruits for this purpose. This study aimed to elucidate the cellular and molecular mechanisms pertaining to the protective impact of blueberry juice (BJ) on prediabetes. Using a hypercaloric diet-induced prediabetic rat model, we evaluated the effects of BJ on glucose, insulin, and lipid profiles; gut microbiota composition; intestinal barrier integrity; and metabolic endotoxemia, as well as on hepatic metabolic surrogates, including several related to mitochondria bioenergetics. BJ supplementation for 14 weeks counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, without a significant impact on the gut microbiota composition and related mechanisms. In addition, BJ treatment effectively alleviated hepatic steatosis and mitochondrial dysfunction observed in the prediabetic animals, as suggested by the amelioration of bioenergetics parameters and key targets of inflammation, insulin signaling, ketogenesis, and fatty acids oxidation. In conclusion, the beneficial metabolic impact of BJ in prediabetes may be mainly explained by the rescue of hepatic mitochondrial bioenergetics. These findings pave the way to support the use of BJ in prediabetes to prevent diabetes and its complications.


Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Tipo 2/metabolismo , Ingestión de Energía/efectos de los fármacos , Jugos de Frutas y Vegetales , Estado Prediabético/metabolismo , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/prevención & control , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Insulina/sangre , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hígado/metabolismo , Mitocondrias/metabolismo , Ratas
7.
Pharmaceutics ; 12(11)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202669

RESUMEN

An emergent trend of blueberries' (BB) "prophylactic" consumption, due to their phytochemicals' richness and well-known health-promoting claims, is widely scaled-up. However, the benefits arising from BB indiscriminate intake remains puzzling based on incongruent preclinical and human data. To provide a more in-depth elucidation and support towards a healthier and safer consumption, we conducted a translation-minded experimental study in healthy Wistar rats that consumed BB in a juice form (25 g/kg body weight (BW)/day; 14 weeks' protocol). Particular attention was paid to the physiological adaptations succeeding in the gut and liver tissues regarding the acknowledged BB-induced metabolic benefits. Systemically, BB boosted serum antioxidant activity and repressed the circulating levels of 3-hydroxybutyrate (3-HB) ketone bodies and 3-HB/acetoacetate ratio. Moreover, BB elicited increased fecal succinic acid levels without major changes on gut microbiota (GM) composition and gut ultra-structural organization. Remarkably, an accentuated hepatic mitochondrial bioenergetic challenge, ensuing metabolic transcriptomic reprogramming along with a concerted anti-inflammatory pre-conditioning, was clearly detected upon long-term consumption of BB phytochemicals. Altogether, the results disclosed herein portray a quiescent mitochondrial-related metabolomics and hint for a unified adaptive response to this nutritional challenge. The beneficial or noxious consequences arising from this dietary trend should be carefully interpreted and necessarily claims future research.

8.
Obes Rev ; 21(12): e13081, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32691524

RESUMEN

Diet is a critical element determining human health and diseases, and unbalanced food habits are major risk factors for the development of obesity and related metabolic disorders. Despite technological and pharmacological advances, as well as intensification of awareness campaigns, the prevalence of metabolic disorders worldwide is still increasing. Thus, novel therapeutic approaches with increased efficacy are urgently required, which often depends on cellular and molecular investigations using robust animal models. In the absence of perfect rodent models, those induced by excessive consumption of fat and sugars better replicate the key aspects that are the root causes of human metabolic diseases. However, the results obtained using these models cannot be directly compared, particularly because of the use of different dietary protocols, and animal species and strains, among other confounding factors. This review article revisits diet-induced models of obesity and related metabolic disorders, namely, metabolic syndrome, prediabetes, diabetes and nonalcoholic fatty liver disease. A critical analysis focused on the main pathophysiological features of rodent models, as opposed to the criteria defined for humans, is provided as a practical guide with a translational perspective for the establishment of animal models of obesity-related metabolic diseases.


Asunto(s)
Enfermedades Metabólicas , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Dieta , Modelos Animales de Enfermedad , Enfermedades Metabólicas/etiología , Síndrome Metabólico/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Roedores
9.
Nutrients ; 12(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218109

RESUMEN

Diabetic nephropathy (DN) is a major microvascular complication of diabetes. Obesity and hyperlipidemia, fueled by unhealthy food habits, are risk factors to glomerular filtration rate (GFR) decline and DN progression. Several studies recommend that diabetic patients should be screened early (in prediabetes) for kidney disease, in order to prevent advanced stages, for whom the current interventions are clearly inefficient. This ambition greatly depends on the existence of accurate early biomarkers and novel molecular targets, which only may arise with a more thorough knowledge of disease pathophysiology. We used a rat model of prediabetes induced by 23 weeks of high-sugar/high-fat (HSuHF) diet to characterize the phenotype of early renal dysfunction and injury. When compared with the control animals, HSuHF-treated rats displayed a metabolic phenotype compatible with obese prediabetes, displaying impaired glucose tolerance and insulin sensitivity, along with hypertriglyceridemia, and lipid peroxidation. Despite unchanged creatinine levels, the prediabetic animals presented glomerular crescent-like lesions, accompanied by increased kidney Oil-Red-O staining, triglycerides content and mRNA expression of IL-6 and iNOS. This model of HSuHF-induced prediabetes can be a useful tool to study early features of DN, namely crescent-like lesions, an early signature that deserves in-depth elucidation.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Dieta para Diabéticos/efectos adversos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Estado Prediabético/complicaciones , Animales , Biomarcadores , Peso Corporal , Colágeno Tipo IV/metabolismo , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Ingestión de Energía , Inmunohistoquímica , Pruebas de Función Renal , Metabolismo de los Lípidos , Masculino , Estado Prediabético/etiología , Estado Prediabético/metabolismo , Ratas
10.
Nutrients ; 12(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963709

RESUMEN

Unhealthy dietary habits are major modifiable risk factors for the development of type 2 diabetes mellitus, a metabolic disease with increasing prevalence and serious consequences. Microvascular complications of diabetes, namely diabetic peripheral neuropathy (DPN), retinopathy (DR), and nephropathy (DN), are associated with high morbidity rates and a heavy social and economic burden. Currently, available therapeutic options to counter the evolution of diabetic microvascular complications are clearly insufficient, which strongly recommends further research. Animal models are essential tools to dissect the molecular mechanisms underlying disease progression, to unravel new therapeutic targets, as well as to evaluate the efficacy of new drugs and/or novel therapeutic approaches. However, choosing the best animal model is challenging due to the large number of factors that need to be considered. This is particularly relevant for models induced by dietary modifications, which vary markedly in terms of macronutrient composition. In this article, we revisit the rodent models of diet-induced DPN, DR, and DN, critically comparing the main features of these microvascular complications in humans and the criteria for their diagnosis with the parameters that have been used in preclinical research using rodent models, considering the possible need for factors which can accelerate or aggravate these conditions.


Asunto(s)
Glucemia/metabolismo , Nefropatías Diabéticas/etiología , Neuropatías Diabéticas/etiología , Retinopatía Diabética/etiología , Dieta Alta en Grasa , Carbohidratos de la Dieta , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Neuropatías Diabéticas/sangre , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/fisiopatología , Retinopatía Diabética/sangre , Retinopatía Diabética/patología , Retinopatía Diabética/fisiopatología , Modelos Animales de Enfermedad , Humanos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA