Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520676

RESUMEN

Metabolomics is an emerging and powerful bioanalytical method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance, as platelet counts and function may vary substantially in individuals. A multiomics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n = 461, R2 = 0.991), whereas lipid mediators (n = 83, R2 = 0.906) and proteins (n = 322, R2 = 0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on the analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as an increase in serotonin, 15-deoxy-PGJ2 and sphingosine-1-phosphate and a decrease in polyunsaturated fatty acids. The present data suggest that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets.

2.
Biomed Pharmacother ; 158: 114089, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538862

RESUMEN

BACKGROUND: Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS: The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS: High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION: High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Osteoporosis , Humanos , Masculino , Femenino , Ratones , Animales , Simvastatina/farmacología , Densidad Ósea , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Huesos , Ovariectomía/efectos adversos
3.
Environ Health Perspect ; 127(10): 107004, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31596610

RESUMEN

BACKGROUND: Pregnancy is a sensitive condition during which adverse environmental exposures should be monitored thoroughly and minimized whenever possible. In particular, the hormone balance during gestation is delicate, and disturbance may cause acute or chronic long-term health effects. A potential endocrine disruption may be provoked by in utero exposure to xenoestrogens mimicking endogenous estrogens. The mycoestrogen zearalenone (ZEN), a toxic fungal secondary metabolite and mycotoxin found frequently in food and feed, constitutes a prominent example. OBJECTIVES: We performed a comprehensive assessment of the transfer as well as phase I and phase II metabolism of ZEN at the human placental barrier. METHODS: Human placentas were perfused with 1µM (318µg/L) ZEN for 6 h. Samples from the maternal and fetal compartment, placental tissue, and fetal plasma were analyzed by a highly sensitive UHPLC-MS/MS assay to detect ZEN as well as nine key metabolites (α-zearalenol, ß-zearalenol, zearalanone, α-zearalanol, ß-zearalanol, ZEN-14-glucuronide, α-zearalenol-14-glucuronide, ß-zearalenol-14-glucuronide, ZEN-14-sulfate). RESULTS: The model revealed a fast maternofetal transfer of ZEN across the human placental barrier. We also unraveled phase I and phase II metabolism of the parent toxin ZEN into the approximately 70-times more estrogenic α-zearalenol and the less active ZEN-14-sulfate conjugate, which are effectively released into the maternal and fetal circulation in considerable amounts. CONCLUSIONS: Our findings suggest that exposure to ZEN (such as through consumption of ZEN-contaminated cereal-based products) during pregnancy may result in in utero exposure of the fetus, not only to ZEN but also some of its highly estrogenically active metabolites. In the light of the known affinity of ZEN and potentially co-occurring xenoestrogens to the estrogen receptor, and our results demonstrating placental transfer of ZEN and its metabolites in an ex vivo model, we recommend further research and more comprehensive assessment of gestational exposures in women. https://doi.org/10.1289/EHP4860.


Asunto(s)
Estrógenos/metabolismo , Placenta/metabolismo , Xenobióticos/metabolismo , Zearalenona/metabolismo , Disruptores Endocrinos/metabolismo , Femenino , Humanos , Embarazo , Espectrometría de Masas en Tándem
4.
Arch Toxicol ; 93(10): 3021-3031, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31559443

RESUMEN

Alternaria molds can produce a variety of different mycotoxins, often resulting in food contamination with chemical mixtures, posing a challenge for risk assessment. Some of these metabolites possess estrogenic properties, an effect whose toxicological relevance is questioned in the light of the strong genotoxic and cytotoxic properties of co-occurring toxins. Thus, we tested a complex extract from A. alternata for estrogenic properties in Ishikawa cells. By assessing alkaline phosphatase activity, we did not observe estrogen receptor (ER) activation at non-cytotoxic concentrations (≤ 10 µg/ml). Furthermore, an extract stripped of highly genotoxic perylene quinones also did not mediate estrogenic effects, despite diminished genotoxic properties in the comet assay (≥ 10 µg/ml). Interestingly, both extracts impaired the estrogenicity of 17ß-estradiol (E2) at non-cytotoxic concentrations (5-10 µg/ml), indicating anti-estrogenic effects which could not be explained by the presence of known mycoestrogens. A mechanism for this unexpected result might be the activation of the aryl hydrocarbon receptor (AhR) by Alternaria metabolites, as indicated by the induction of CYP1A1 transcription. While a direct influence on the metabolism of E2 could not be confirmed by LC-MS/MS, literature describing a direct interplay of the AhR with estrogenic pathways points to a corresponding mode of action. Taken together, the present study indicates AhR-mediated anti-estrogenic effects as a novel mechanism of naturally co-occurring Alternaria toxin mixtures. Furthermore, our results confirm their genotoxic activity and raise questions about the contribution of still undiscovered metabolites to toxicological properties.


Asunto(s)
Alternaria/metabolismo , Antagonistas de Estrógenos/toxicidad , Micotoxinas/toxicidad , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Estradiol/metabolismo , Antagonistas de Estrógenos/administración & dosificación , Antagonistas de Estrógenos/aislamiento & purificación , Humanos , Mutágenos/administración & dosificación , Mutágenos/aislamiento & purificación , Mutágenos/toxicidad , Micotoxinas/administración & dosificación , Micotoxinas/aislamiento & purificación , Receptores de Hidrocarburo de Aril/metabolismo
5.
Anal Chem ; 91(17): 11334-11342, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31398002

RESUMEN

We are constantly exposed to a variety of environmental contaminants and hormones, including those mimicking endogenous estrogens. These highly heterogeneous molecules are collectively referred to as xenoestrogens and hold the potential to affect and alter the delicate hormonal balance of the human body. To monitor exposure and investigate potential health implications, comprehensive analytical methods covering all major xenoestrogen classes are needed but not available to date. Herein, we describe a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of multiple classes of endogenous as well as exogenous estrogens in human urine, serum, and breast milk to enable proper exposure and risk assessment. In total, 75 analytes were included, whereof a majority was successfully in-house validated in the three matrices. Extraction recoveries of validated analytes ranged from 71% to 110% and limits of quantification from 0.015 to 5 µg/L, 0.03 to 14 µg/L, and 0.03 to 4.6 µg/L in urine, serum, and breast milk, respectively. The applicability of the novel method was demonstrated in proof-of-principle experiments by analyzing urine from Austrian individuals and breast milk from Austrian and Nigerian individuals. Thereby, we proved the methods' feasibility to identify and quantify different classes of xenoestrogens simultaneously. The results illustrate the general importance of multiclass exposure assessment in the context of the exposome paradigm. Specifically, they highlight the need for estimating total estrogenic burden rather than single analyte or chemical class measurements and its potential impact in endocrine disruption and hormone related diseases including cancers.


Asunto(s)
Estrógenos/análisis , Exposoma , Xenobióticos/análisis , Austria , Cromatografía Liquida/métodos , Disruptores Endocrinos/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Estrógenos/orina , Humanos , Leche Humana/química , Nigeria , Medición de Riesgo , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...