Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116550, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593702

RESUMEN

Physiological and pathological processes such as homeostasis, embryogenesis, development, tumorigenesis, and cell movement depend on the intercellular communication through gap junctions (GJIC). Connexin (Cx)-based GJ channels are formed of two apposing hemichannels in the contiguous cells and provide a direct pathway for electrical and metabolic intercellular communication. The main modulators of GJ conductance are transjunctional voltage, intracellular pH, Ca2+, Mg2+, and phosphorylation. Chemical modulators of GJIC are being used in cases of various intercellular communication-dependent diseases. In this study, we used molecular docking, dual whole-cell patch-clamp, and Western blotting to investigate the impact of connexin phosphorylation on GJ chemical gating by α-pinene and other GJ inhibitors (octanol, carbenoxolone, mefloquine, intracellular pH, glycyrrhetinic acid, and sevoflurane) in HeLa cells expressing exogenous Cx43 (full length and truncated at amino acid 258) and other connexins typical of heart and/or nervous system (Cx36, Cx40, Cx45, and Cx47), and in cells expressing endogenous Cx43 (Novikoff and U-87). We found that Ca2+-regulated kinases, such as Ca2+/calmodulin-dependent kinase II, atypical protein kinase C, cyclin-dependent kinase, and Pyk2 kinase may allosterically modulate the potency of α-pinene through phosphorylation of Cx43 C-terminus. The identified new phenomenon was Cx isoform-, inhibitor-, and cell type-dependent. Overall, these results suggest that compounds, the potency of which depends on receptor phosphorylation, might be of particular interest in developing targeted therapies for diseases accompanied by high kinase activity, such as cardiac arrhythmias, epilepsy, stroke, essential tremor, inflammation, and cancer.


Asunto(s)
Conexina 43 , Uniones Comunicantes , Simulación del Acoplamiento Molecular , Humanos , Conexina 43/metabolismo , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Fosforilación/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Células HeLa
2.
EMBO Rep ; 25(1): 198-227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177908

RESUMEN

The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/ß-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.


Asunto(s)
Cilios , Tubulina (Proteína) , Cilios/metabolismo , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Células Epiteliales/metabolismo
3.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37922419

RESUMEN

Midbodies function during telophase to regulate the abscission step of cytokinesis. Until recently, it was thought that abscission-regulating proteins, such as ESCRT-III complex subunits, accumulate at the MB by directly or indirectly binding to the MB resident protein, CEP55. However, recent studies have shown that depletion of CEP55 does not fully block ESCRT-III targeting the MB. Here, we show that MBs contain mRNAs and that these MB-associated mRNAs can be locally translated, resulting in the accumulation of abscission-regulating proteins. We demonstrate that localized MB-associated translation of CHMP4B is required for its targeting to the abscission site and that 3' UTR-dependent CHMP4B mRNA targeting to the MB is required for successful completion of cytokinesis. Finally, we identify regulatory cis-elements within RNAs that are necessary and sufficient for mRNA trafficking to the MB. We propose a novel method of regulating cytokinesis and abscission by MB-associated targeting and localized translation of selective mRNAs.


Asunto(s)
Proteínas de Ciclo Celular , Citocinesis , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , ARN Mensajero/genética , Telofase
4.
Front Cell Dev Biol ; 11: 1268922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736498

RESUMEN

The regulation of machinery involved in cell migration is vital to the maintenance of proper organism function. When migration is dysregulated, a variety of phenotypes ranging from developmental disorders to cancer metastasis can occur. One of the primary structures involved in cell migration is the actin cytoskeleton. Actin assembly and disassembly form a variety of dynamic structures which provide the pushing and contractile forces necessary for cells to properly migrate. As such, actin dynamics are tightly regulated. Classically, the Rho family of GTPases are considered the major regulators of the actin cytoskeleton during cell migration. Together, this family establishes polarity in the migrating cell by stimulating the formation of various actin structures in specific cellular locations. However, while the Rho GTPases are acknowledged as the core machinery regulating actin dynamics and cell migration, a variety of other proteins have become established as modulators of actin structures and cell migration. One such group of proteins is the Rab40 family of GTPases, an evolutionarily and functionally unique family of Rabs. Rab40 originated as a single protein in the bilaterians and, through multiple duplication events, expanded to a four-protein family in higher primates. Furthermore, unlike other members of the Rab family, Rab40 proteins contain a C-terminally located suppressor of cytokine signaling (SOCS) box domain. Through the SOCS box, Rab40 proteins interact with Cullin5 to form an E3 ubiquitin ligase complex. As a member of this complex, Rab40 ubiquitinates its effectors, controlling their degradation, localization, and activation. Because substrates of the Rab40/Cullin5 complex can play a role in regulating actin structures and cell migration, the Rab40 family of proteins has recently emerged as unique modulators of cell migration machinery.

5.
Magnetochemistry ; 9(7)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476506

RESUMEN

Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, LIC2 has received relatively limited characterization thus far, despite partially orthogonal functional roles. In this study, we present a near-to-complete backbone NMR chemical shift assignment of the C-terminal region of the light intermediate chain 2 of human dynein 1 (LIC2-C). We perform a comparative analysis of the secondary structure propensity of LIC2-C with the one previously reported for LIC1-C and show that the two transient helices in LIC1 that interact with motor adaptors are also present in LIC2.

6.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390228

RESUMEN

The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.


Asunto(s)
Cresta Neural , Pez Cebra , Animales , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Movimiento Celular/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/genética , Mutación/genética , Pez Cebra/genética , Pez Cebra/metabolismo
7.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798155

RESUMEN

Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement: Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.

8.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36656118

RESUMEN

Trisomy 21, the genetic cause of Down syndrome, disrupts primary cilia formation and function, in part through elevated Pericentrin, a centrosome protein encoded on chromosome 21. Yet how trisomy 21 and elevated Pericentrin disrupt cilia-related molecules and pathways, and the in vivo phenotypic relevance remain unclear. Utilizing ciliogenesis time course experiments combined with light microscopy and electron tomography, we reveal that chromosome 21 polyploidy elevates Pericentrin and microtubules away from the centrosome that corral MyosinVA and EHD1, delaying ciliary membrane delivery and mother centriole uncapping essential for ciliogenesis. If given enough time, trisomy 21 cells eventually ciliate, but these ciliated cells demonstrate persistent trafficking defects that reduce transition zone protein localization and decrease sonic hedgehog signaling in direct anticorrelation with Pericentrin levels. Consistent with cultured trisomy 21 cells, a mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers at P4. Our work reveals that elevated Pericentrin from trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding mechanism results in signaling deficiencies consistent with the neurological phenotypes found in individuals with Down syndrome.


Human cells typically have 23 pairs of structures known as chromosomes. Each chromosome contains a unique set of genes which provide the instructions needed to make proteins and other essential molecules found in the body. Individuals with Down syndrome have an extra copy of chromosome 21. This genetic alteration is known as trisomy 21 and affects many different organs in the body, leading to various medical conditions including intellectual disability, heart defects, and immune deficiencies. A recent study showed that cells from individuals with Down syndrome had defects in forming primary cilia ­ structures on the surface of cells which work as signaling hubs to control how cells grow and develop. These cilia defects were in large part due to excess levels of a protein known as Pericentrin, which is encoded by a gene found on chromosome 21. But it is unclear how Pericentrin disrupts cilia assembly, and how this may contribute to the medical conditions observed in individuals with Down syndrome. To address these questions, Jewett et al. studied human cells that had been engineered to have trisomy 21. The experiments found that trisomy 21 led to higher levels of Pericentrin and altered the way molecules were organized at the sites where primary cilia form. This caused the components required to build and maintain the primary cilium to become trapped in the wrong locations. The trisomy 21 cells were eventually able to rearrange the molecules and build a primary cilium, but it took them twice as long as cells with 23 pairs of chromosomes and their primary cilium did not properly work. Further experiments were then conducted on mice that had been engineered to have an extra copy of a portion of genes on human chromosome 21, including the gene for Pericentrin. Jewett et al. found that these mice assembled cilia later and had defects in cilia signaling, similar to the human trisomy 21 cells. This resulted in mild abnormalities in brain development that were consistent with what occurs in individuals with Down syndrome. These findings suggest that the elevated levels of Pericentrin in trisomy 21 causes changes in cilia formation and function which, in turn, may alter how the mouse brain develops. Further studies will be required to find out whether defects in primary cilia may contribute to other medical conditions observed in individuals with Down syndrome.


Asunto(s)
Síndrome de Down , Ratones , Animales , Proteínas Hedgehog/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo
9.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35512830

RESUMEN

Rab40c is a SOCS box-containing protein which binds Cullin5 to form a ubiquitin E3 ligase complex (Rab40c/CRL5) to regulate protein ubiquitylation. However, the exact functions of Rab40c remain to be determined, and what proteins are the targets of Rab40c-Cullin5-mediated ubiquitylation in mammalian cells are unknown. Here we showed that in migrating MDA-MB-231 cells Rab40c regulates focal adhesion's number, size, and distribution. Mechanistically, we found that Rab40c binds the protein phosphatase 6 (PP6) complex and ubiquitylates one of its subunits, ankyrin repeat domain 28 (ANKRD28), thus leading to its lysosomal degradation. Furthermore, we identified that phosphorylation of FAK and MOB1 is decreased in Rab40c knock-out cells, which may contribute to focal adhesion site regulation by Rab40c. Thus, we propose a model where Rab40c/CRL5 regulates ANKRD28 ubiquitylation and degradation, leading to a decrease in PP6 activity, which ultimately affects FAK and Hippo pathway signaling to alter focal adhesion dynamics.


Asunto(s)
Adhesiones Focales , Proteínas Supresoras de la Señalización de Citocinas , Animales , Adhesiones Focales/metabolismo , Mamíferos/metabolismo , Fosforilación , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
10.
J Cell Sci ; 135(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575063

RESUMEN

Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.


Asunto(s)
Citoesqueleto de Actina , Ciliopatías , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cuerpos Basales/metabolismo , Cilios/metabolismo , Ciliopatías/metabolismo , Humanos
11.
Mol Biol Cell ; 33(8)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476505

RESUMEN

Trisomy 21, the source of Down syndrome, causes a 0.5-fold protein increase of the chromosome 21-resident gene Pericentrin (PCNT) and reduces primary cilia formation and signaling. We investigate how PCNT imbalances disrupt cilia. Using isogenic RPE-1 cells with increased chromosome 21 dosage, we find PCNT accumulates around the centrosome as a cluster of enlarged cytoplasmic puncta that localize along microtubules (MTs) and at MT ends. Cytoplasmic PCNT puncta impact the density, stability, and localization of the MT trafficking network required for primary cilia. The PCNT puncta appear to sequester cargo peripheral to centrosomes in what we call pericentrosomal crowding. The centriolar satellite proteins PCM1, CEP131, and CEP290, important for ciliogenesis, accumulate at enlarged PCNT puncta in trisomy 21 cells. Reducing PCNT when chromosome 21 ploidy is elevated is sufficient to decrease PCNT puncta and pericentrosomal crowding, reestablish a normal density of MTs around the centrosome, and restore ciliogenesis to wild-type levels. A transient reduction in MTs also decreases pericentrosomal crowding and partially rescues ciliogenesis in trisomy 21 cells, indicating that increased PCNT leads to defects in the MT network deleterious to normal centriolar satellite distribution. We propose that chromosome 21 aneuploidy disrupts MT-dependent intracellular trafficking required for primary cilia.


Asunto(s)
Síndrome de Down , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Síndrome de Down/metabolismo , Humanos , Microtúbulos/metabolismo
12.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293963

RESUMEN

Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.


Asunto(s)
Neoplasias de la Mama , Proteínas Cullin , Proteínas de Unión al GTP rap , Citoesqueleto de Actina , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proteínas Cullin/metabolismo , Femenino , Humanos , Seudópodos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rap/metabolismo
13.
Mol Biol Cell ; 33(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35179994

RESUMEN

To complete cytokinesis, abscission of the proteinaceous and microtubule-rich intercellular bridge needs to occur. The midbody (MB), a structure that forms on the intercellular bridge, is a key regulator of cytokinesis and appears to play a role in downstream signaling after abscission. Initially, it was thought that after abscission was completed, the MB was degraded. However, a new body of evidence has emerged suggesting that one daughter cell or a surrounding non-daughter cell can inherit or internalize the MB, thus leading to changes in cell proliferation and differentiation. In this review, we highlight the role that the MB has after mitosis. We will focus on the rising evidence that the MB plays an important role in establishment of cell polarity, such as apical lumen formation, neurite extension, and ciliation. Additionally, we will discuss the evidence suggesting that MBs can also serve the role of signaling organelles (MBsomes) that lead to cell proliferation, differentiation, and even tumorigenicity.


Asunto(s)
Citocinesis , Mitosis , Proliferación Celular , Células HeLa , Humanos , Microtúbulos/metabolismo , Transducción de Señal
14.
Elife ; 102021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34397384

RESUMEN

The neural crest is a migratory population of stem-like cells that contribute to multiple traits including the bones of the skull, peripheral nervous system, and pigment. How neural crest cells differentiate into diverse cell types is a fundamental question in the study of vertebrate biology. Here, we use single-cell RNA sequencing to characterize transcriptional changes associated with neural crest cell development in the zebrafish trunk during the early stages of migration. We show that neural crest cells are transcriptionally diverse and identify pre-migratory populations already expressing genes associated with differentiated derivatives, specifically in the xanthophore lineage. Further, we identify a population of Rohon-Beard neurons in the data. The data presented identify novel genetic markers for multiple trunk neural crest cell populations and Rohon-Beard neurons providing insight into previously uncharacterized genes critical for vertebrate development.


Asunto(s)
Movimiento Celular , Marcadores Genéticos , Cresta Neural/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Pez Cebra/embriología , Animales , Linaje de la Célula , Embrión no Mamífero , Expresión Génica , Neuronas/fisiología
15.
Methods Mol Biol ; 2293: 163-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453716

RESUMEN

Despite the critical role of Rab GTPases for intracellular transport, the vast majority of proteins within this family remain poorly characterized, including the Rab40 subfamily. Often recognized as atypical Rabs, the Rab40 family of proteins are unlike any other small GTPase because they contain a C-terminal suppressor of cytokine signaling (SOCS) box. It is well established that this SOCS domain in other proteins mediates an interaction with the scaffold protein Cullin5 in order to form a E3 ubiquitin ligase complex critical for protein ubiquitylation and turnover. Although the function of SOCS/Cullin5 complexes has been well defined in several of these other proteins, this is not yet the case for the Rab40 family of proteins. We have previously shown that the Rab40b family member plays an important role during three-dimensional (3D) breast cancer cell migration. To further this knowledge, we began to investigate the SOCS-dependent role of Rab40b during cell migration. Here, we describe an unbiased approach to identify potential Rab40b/Cullin5 substrates. We anticipate that this method will be useful for studying the function of other Rab40 family members as well as other SOCS box containing proteins.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Secuencia de Aminoácidos , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33999101

RESUMEN

Rab40b is a SOCS box-containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b-Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b-Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b-Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


Asunto(s)
Citoesqueleto de Actina/genética , Actinas/genética , Proteínas del Citoesqueleto/genética , Movimiento Celular/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Humanos , Fibras de Estrés/genética
17.
Dev Cell ; 56(3): 325-340.e8, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561422

RESUMEN

Primary cilia are sensory organelles that utilize the compartmentalization of membrane and cytoplasm to communicate signaling events, and yet, how the formation of a cilium is coordinated with reorganization of the cortical membrane and cytoskeleton is unclear. Using polarized epithelia, we find that cortical actin clearing and apical membrane partitioning occur where the centrosome resides at the cell surface prior to ciliation. RAB19, a previously uncharacterized RAB, associates with the RAB-GAP TBC1D4 and the HOPS-tethering complex to coordinate cortical clearing and ciliary membrane growth, which is essential for ciliogenesis. This RAB19-directed pathway is not exclusive to polarized epithelia, as RAB19 loss in nonpolarized cell types blocks ciliogenesis with a docked ciliary vesicle. Remarkably, inhibiting actomyosin contractility can substitute for the function of the RAB19 complex and restore ciliogenesis in knockout cells. Together, this work provides a mechanistic understanding behind a cytoskeletal clearing and membrane partitioning step required for ciliogenesis.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Organogénesis , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Polaridad Celular , Centrosoma/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa , Humanos , Espacio Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas
18.
Mol Biol Cell ; 32(7): 554-566, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566684

RESUMEN

Abscission is a complex cellular process that is required for mitotic division. It is well established that coordinated and localized changes in actin and microtubule dynamics are vital for cytokinetic ring formation, as well as establishment of the abscission site. Actin cytoskeleton reorganization during abscission would not be possible without the interplay between Rab11- and Rab35-containing endosomes and their effector proteins, whose roles in regulating endocytic pathways at the cleavage furrow have now been studied extensively. Here, we identified Rab14 as a novel regulator of cytokinesis. We demonstrate that depletion of Rab14 causes either cytokinesis failure or significantly prolongs division time. We show that Rab14 contributes to the efficiency of recruiting Rab11-endosomes to the thin intracellular bridge (ICB) microtubules and that Rab14 knockout leads to inhibition of actin clearance at the abscission site. Finally, we demonstrate that Rab14 binds to microtubule minus-end interacting MACF2/CAMSAP3 complex and that this binding affects targeting of endosomes to the ICB microtubules. Collectively, our data identified Rab14 and MACF2/CAMSAP3 as proteins that regulate actin depolymerization and endosome targeting during cytokinesis.


Asunto(s)
Citocinesis/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Endosomas/fisiología , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Proteínas de Unión al GTP rab/fisiología
19.
Biol Open ; 9(10)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32973079

RESUMEN

The Rab11 apical recycling endosome pathway is a well-established regulator of polarity and lumen formation; however, Rab11-vesicular trafficking also directs a diverse array of other cellular processes, raising the question of how Rab11 vesicles achieve specificity in space, time and content of cargo delivery. In part, this specificity is achieved through effector proteins, yet the role of Rab11 effector proteins in vivo remains vague. Here, we use CRISPR/Cas9 gene editing to study the role of the Rab11 effector Fip5 during zebrafish intestinal development. Zebrafish contain two paralogous genes, fip5a and fip5b, that are orthologs of human FIP5 We find that fip5a- and fip5b-mutant fish show phenotypes characteristic of microvillus inclusion disease, including microvilli defects and lysosomal accumulation. Single and double mutant analyses suggest that fip5a and fip5b function in parallel and regulate trafficking pathways required for assembly of keratin at the terminal web. Remarkably, in some genetic backgrounds, the absence of Fip5 triggers protein upregulation of a closely related family member, Fip1. This compensation mechanism occurs both during zebrafish intestinal development and in tissue culture models of lumenogenesis. In conclusion, our data implicate the Rab11 effectors Fip5 and Fip1 in a trafficking pathway required for apical microvilli formation.


Asunto(s)
Proteínas Portadoras/metabolismo , Intestinos/embriología , Organogénesis/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas Portadoras/genética , Endosomas , Microvellosidades/genética , Microvellosidades/metabolismo , Microvellosidades/ultraestructura , Mutación , Fenotipo , Unión Proteica
20.
Mol Biol Cell ; 31(18): 2070-2091, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32614697

RESUMEN

ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.


Asunto(s)
Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Animales , Técnicas de Cultivo de Célula , Centrosoma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Fibroblastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Células Madre Embrionarias de Ratones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA