Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Magn Reson Med ; 91(4): 1314-1322, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044723

RESUMEN

PURPOSE: To demonstrate J-difference coediting of glutamate using Hadamard encoding and reconstruction of Mescher-Garwood-edited spectroscopy (HERMES). METHODS: Density-matrix simulations of HERMES (TE 80 ms) and 1D J-resolved (TE 31-229 ms) of glutamate (Glu), glutamine (Gln), γ-aminobutyric acid (GABA), and glutathione (GSH) were performed. HERMES comprised four sub-experiments with editing pulses applied as follows: (A) 1.9/4.56 ppm simultaneously (ONGABA /ONGSH ); (B) 1.9 ppm only (ONGABA /OFFGSH ); (C) 4.56 ppm only (OFFGABA /ONGSH ); and (D) 7.5 ppm (OFFGABA /OFFGSH ). Phantom HERMES and 1D J-resolved experiments of Glu were performed. Finally, in vivo HERMES (20-ms editing pulses) and 1D J-resolved (TE 31-229 ms) experiments were performed on 137 participants using 3 T MRI scanners. LCModel was used for quantification. RESULTS: HERMES simulation and phantom experiments show a Glu-edited signal at 2.34 ppm in the Hadamard sum combination A+B+C+D with no overlapping Gln signal. The J-resolved simulations and phantom experiments show substantial TE modulation of the Glu and Gln signals across the TEs, whose average yields a well-resolved Glu signal closely matching the Glu-edited signal from the HERMES sum spectrum. In vivo quantification of Glu show that the two methods are highly correlated (p < 0.001) with a bias of ∼10%, along with similar between-subject coefficients of variation (HERMES/TE-averaged: ∼7.3%/∼6.9%). Other Hadamard combinations produce the expected GABA-edited (A+B-C-D) or GSH-edited (A-B+C-D) signal. CONCLUSION: HERMES simulation and phantom experiments show the separation of Glu from Gln. In vivo HERMES experiments yield Glu (without Gln), GABA, and GSH in a single MRS scan.


Asunto(s)
Ácido Glutámico , Imagen por Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética/métodos , Glutamina , Glutatión/química , Ácido gamma-Aminobutírico/química
2.
Drug Alcohol Depend ; 233: 109326, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131529

RESUMEN

BACKGROUND: Adolescent marijuana (MJ) use has been associated with alterations in brain structure and function as well as behavior. Examination of neurochemical correlates such as GABA (gamma-aminobutyric acid) and Glx (glutamate + glutamine) in MJ users remains limited. Impulsivity, identified as a risk factor and consequence of MJ use, has been associated with GABA and Glx levels in healthy and clinical populations. However, this relationship has not been investigated in MJ users. In this study, we examined levels of GABA and Glx in the anterior cingulate cortex (ACC) and its relationship with impulsive behavior in MJ-using adolescents and healthy controls. METHODS: Healthy control subjects (HC; N = 21) and MJ-using adolescents (N = 18) completed a metabolite-edited 1H MRS exam to measure ACC GABA and Glx levels, a structured clinical interview to assess MJ use, and the Barratt Impulsivity Scale (BIS-11) to evaluate impulsive behavior. RESULTS: Adolescent MJ users had significantly lower tissue-corrected GABA (with macromolecules; GABA+) levels (p = 0.029) compared to HC's. No significant between-group differences were observed in ACC Glx levels. Assessment of impulsive behavior demonstrated no significant between-group differences in motor, non-planning, attention, and total impulsivity scores. Additionally, impulsivity measures and tissue-corrected GABA+ or Glx levels were not significantly correlated in either group. CONCLUSION: Lower GABA levels in MJ users may indicate alterations in excitatory-inhibitory mechanisms critical for neurodevelopment. Although no significant relationships were observed between impulsive measures and GABA or Glx levels in both groups, further investigations are needed examining the relationship between neurochemical correlates, behavior, and adolescent MJ use.


Asunto(s)
Cannabis , Trastornos Relacionados con Sustancias , Adolescente , Ácido Glutámico , Glutamina , Humanos , Conducta Impulsiva , Espectroscopía de Resonancia Magnética , Ácido gamma-Aminobutírico
3.
Psychiatry Res Neuroimaging ; 314: 111314, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34098247

RESUMEN

Epidemiological studies show that altitude-of-residence is an independent risk factor for worsening rates of mood disorders, substance abuse, and suicide. Proton (1H) magnetic resonance spectroscopy (MRS) studies in rodent models of moderate-to-high altitude exposure have documented significant alterations in total creatine, glutamate, and myo-inositol, neurometabolites involved in bioenergetic homeostasis and neuronal/glial cell function. This preliminary study utilized 3 Tesla 1H MRS to study anterior cingulate cortex (ACC) and parietal-occipital cortex (POC) neurochemistry in healthy subjects residing in Utah (n = 19), Massachusetts (n = 10), and South Carolina (n = 10), to test the hypothesis that individuals residing at moderate altitude (Utah; 1,372 m) would show neurometabolite alterations vs. subjects living at sea level. Expressed as ratios to total N-acetyl aspartate (NAA), Utah participants showed lower ACC (p = 0.03) and POC (p < 0.01) total creatine, a trend towards lower ACC glutamate (p = 0.06), and lower POC myo-inositol (p = 0.02). Study limitations include small sample sizes and uncorrected multiple comparisons. To our knowledge, this is the first MRS investigation to identify potential neurochemical differences in individuals residing at moderate altitudes vs. sea level, warranting future 1H MRS studies in larger cohorts and across a range of altitudes-of-residence.


Asunto(s)
Altitud , Ácido Aspártico , Creatina , Humanos , Espectroscopía de Protones por Resonancia Magnética , Utah
4.
Neurosci Res ; 163: 10-17, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32171782

RESUMEN

Veterans experience chronic pain more frequently than civilians. Identification of neurobiological mechanisms underlying the pathophysiology of chronic pain in a veteran population may aid in the development of novel treatment targets. In this pilot proof-of-concept study, veterans with chronic pain (N = 61) and no chronic pain (N = 19) completed clinical interviews, self-report questionnaires inquiring about pain history, interference of pain with daily life, and pain catastrophizing, as well as measures of depressive and anxious symptoms. Veterans also underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 T in the anterior cingulate cortex (ACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence. We found no group difference in neurometabolites between veterans with and without chronic pain; however, pain intensity, negative thinking about pain, and description of pain in affective terms were associated with lower GABA/Cre in the ACC. In addition, the Glu/GABA ratio in the ACC was positively associated with anxiety and depressive symptoms in veterans with chronic pain. Reductions in GABA in the ACC may contribute to increased pain intensity and greater pain catastrophizing in veterans with chronic pain. Furthermore, a disturbance in the excitatory-inhibitory balance may contribute to the anxious and depressive symptoms related to chronic pain. Given the pilot nature of the study, these findings must be considered preliminary.


Asunto(s)
Dolor Crónico , Glutamina , Ácido Glutámico , Giro del Cíngulo , Humanos , Protones , Ácido gamma-Aminobutírico
5.
Free Radic Biol Med ; 153: 112-121, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32335159

RESUMEN

BACKGROUND: Caloric restriction (CR) without micronutrient deficiency has been shown to increase both lifespan and healthspan. In animals, CR has been demonstrated to increase glutathione (GSH), a neuroprotective antioxidant, in the brain and preserve brain mitochondrial function by altering neuroenergetics. In humans it has been associated with improvements in mood states and cognitive function. However, most CR studies have employed a 30-60% reduction in calories which is likely too stringent for most people to adhere to long-term. Thus, there is an unmet need for nutritional supplements which can mimic the biological effects of CR, without the need for calorie limitations. AIM: The purpose of the present randomized, placebo-controlled clinical trial was to use Proton (1H) Magnetic Resonance Spectroscopic (MRS) measurements to determine non-invasively whether a blend of micronutrients, a putative CR mimetic, positively modulates metabolites related to neuroprotection and neuroenergetics in the brain. METHODS: Healthy middle-aged men and women (N = 63 [33 women]; age: 40-60 years) were randomized in a double-blind manner to 6 weeks supplementation with either the putative CR mimetic or placebo. At baseline and 6 weeks, subjects underwent MRS at 3 T to investigate changes in brain chemistry, including the neurometabolites: GSH, Glutamate (Glu), Glutamine (Gln) and N-Acetylaspartate (NAA). RESULTS: GSH, a marker of antioxidant and cellular redox status, increased in the brain of participants in the supplement group. The supplement group also showed an increase in the Glu/Gln ratio, a marker of excitatory neurotransmission and bioenergetics. A trend for an increase in NAA/H2O, a marker of neuronal integrity, was observed in females in the supplement group. CONCLUSIONS: The present study reveals that 6-weeks daily supplementation with a micronutrient blend elicits positive changes in brain neurochemistry. This is the first study to demonstrate that a putative CR mimetic increases brain GSH concentrations and improves neuroprotection and neuroenergetics in the brain of healthy humans. This study was registered at www.clinicaltrials.gov as NCT02439983.


Asunto(s)
Restricción Calórica , Glutatión , Adulto , Animales , Encéfalo/diagnóstico por imagen , Suplementos Dietéticos , Femenino , Humanos , Masculino , Micronutrientes , Persona de Mediana Edad
6.
J Neurophysiol ; 123(5): 1619-1629, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186438

RESUMEN

Traumatic brain injury (TBI) is one of the most prevalent forms of morbidity in veterans and service members, with mild traumatic brain injury (mTBI) being the most common. The diagnosis of mTBI in veterans is difficult because of mixed etiologies and high comorbidity with other disorders such as posttraumatic stress disorder (PTSD), depression, and substance use. Advanced neuroimaging techniques such as magnetic resonance spectroscopy (MRS) may be useful in identifying neurochemical alterations in TBI, which may aid the development of new targets for therapeutic intervention. Veterans with (n = 53) and without a history of TBI (n = 26) underwent single-voxel proton magnetic resonance spectroscopy (1H MRS) at 3 Tesla in the anterior cingulate cortex (ACC) using a two-dimensional J-resolved point spectroscopy sequence in addition to completing a clinical battery. TBI diagnosis was made using the research version of the Ohio State University TBI Identification Method. An increased myoinositol (mI)/H2O ratio was observed in the ACC of the TBI group compared with the non-TBI group during the chronic stage of TBI (average of 139.7 mo after injury), which may be reflective of astrogliosis. Several metabolites in the ACC demonstrated significant associations with TBI variables, including number of TBI with loss of consciousness (LOC) and time since most severe TBI, suggesting that changes in some metabolites may be potential diagnostic and prognostic indicators.NEW & NOTEWORTHY In this study of veterans, we used a state-of-the-art neuroimaging tool to probe the neurometabolic profile of the anterior cingulate cortex in veterans with traumatic brain injury (TBI). We report significantly elevated myoinositol levels in veterans with TBI compared with those without TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Gliosis/metabolismo , Giro del Cíngulo/metabolismo , Inositol/metabolismo , Veteranos , Adulto , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Masculino , Espectroscopía de Protones por Resonancia Magnética
7.
Addict Biol ; 25(6): e12810, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373138

RESUMEN

Proton magnetic resonance spectroscopy (1 H-MRS) studies have demonstrated abnormal levels of a variety of neurometabolites in treatment-seeking individuals with moderate-severe alcohol use disorder (AUD) following acute withdrawal. In contrast, few studies have investigated neurochemical changes across early abstinence in less severe, treatment-naïve AUD. The present study, which represents the primary report of a research grant from ABMRF/The Alcohol Research Fund, measured dorsal anterior cingulate cortex (dACC) GABA, glutamate, and glutamine levels in treatment-naïve AUD (n = 23) via three 1 H-MRS scans spaced across a planned week of abstinence from alcohol. In addition to AUD participants, 12 light drinkers completed two scans, separated by 48 hours, to ensure that results in AUD were not produced by between-scan differences other than abstinence from alcohol. 1 H-MRS spectra were acquired in dACC at each scan using 2D J-resolved point-resolved spectroscopy. Linear mixed modeling results demonstrated a significant increase in GABA, but not glutamate or glutamine (Ps = .237-.626), levels between scans 1 and 2 (+8.88%, .041), with no difference between scans 2 and 3 (+1.00%, .836), in AUD but not LD (F = 1.24, .290) participants. Exploratory regression analyses tentatively revealed a number of significant prospective associations between changes in glutamine levels and heavy drinking, craving, and withdrawal symptoms. Most notably, the present study demonstrated return from abnormally low to normal GABA levels in treatment-naïve AUD within 3 days of their last drink; the pattern of results was consistent with glutamate and glutamine disturbances being exclusive to relatively more severe AUD.


Asunto(s)
Abstinencia de Alcohol , Alcoholismo/metabolismo , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Ansia/fisiología , Femenino , Giro del Cíngulo/metabolismo , Humanos , Masculino , Autoinforme , Síndrome de Abstinencia a Sustancias/fisiopatología , Adulto Joven
8.
Neurosci Lett ; 706: 207-210, 2019 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-31108129

RESUMEN

Although the neurotransmitters/modulators glutamate and, more recently, glycine have been implicated in the development and maintenance of Alcohol Use Disorder (AUD) in preclinical research, human proton magnetic resonance spectroscopy (1H-MRS) studies have focused solely on the measurement of glutamate. The purpose of the present analysis was to examine the relative associations of brain glutamate and glycine levels with recent heavy drinking in 41 treatment naïve individuals with AUD using 1H-MRS. The present study is the first that we are aware of to report in vivo brain glycine levels from an investigation of addiction. Dorsal Anterior Cingulate Cortex (dACC) glutamate and glycine concentration estimates were obtained using Two-Dimensional J-Resolved Point Resolved Spectroscopy at 3 Tesla, and past 2-week summary estimates of alcohol consumption were assessed via the Timeline Followback method. Glutamate (ß = -0.44, t = -3.09, p = 0.004) and glycine (ß = -0.68, t = -5.72, p < 0.001) were each significantly, inversely associated with number of heavy drinking days when considered alone. However, when both variables were simultaneously entered into a single regression model, the effect of glutamate was no longer significant (ß = -0.11, t = -0.81, p = 0.42) whereas the effect of glycine remained significant (ß = -0.62, t = -4.38, p < 0.001). The present study extends the literature by demonstrating a unique, inverse association of brain glycine levels with recent heavy drinking in treatment naïve individuals with AUD. If replicated and extended, these data could lead to enhanced knowledge of how glycinergic systems change with alcohol consumption and AUD progression leading to pharmacological interventional/preventative strategies that modulate brain glycine levels.


Asunto(s)
Alcoholismo/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Lóbulo Frontal/metabolismo , Glicina/metabolismo , Adulto , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Espectroscopía de Protones por Resonancia Magnética , Adulto Joven
9.
J Affect Disord ; 248: 166-174, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735853

RESUMEN

BACKGROUND: Trauma-related diagnoses such as posttraumatic stress disorder (PTSD) are prevalent in veterans. The identification of mechanisms related to stress vulnerability and development of PTSD specifically in a veteran population may aid in the prevention of PTSD and identification of novel treatment targets. METHODS: Veterans with PTSD (n = 27), trauma-exposed veterans with no PTSD (TEC, n = 18) and non-trauma-exposed controls (NTEC, n = 28) underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 Tesla in the dorsal anterior cingulate cortex (dACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence in addition to completing a clinical battery. RESULTS: The PTSD and TEC groups demonstrated lower gamma-amino butyric acid (GABA)/H2O (p = 0.02) and glutamine (Gln)/H2O (p = 0.02) in the dACC as compared to the NTEC group. The PTSD group showed a trend towards higher Glu/GABA (p = 0.053) than the NTEC group. Further, GABA/H2O in the dACC correlated negatively with sleep symptoms in the PTSD group (p = 0.03) but not in the TEC and NTEC groups. LIMITATIONS: Cross-sectional study design, concomitant medications, single voxel measurement as opposed to global changes, absence of measure of childhood or severity of trauma and objective sleep measures, female participants not matched for menstrual cycle phase. CONCLUSIONS: Exposure to trauma in veterans may be associated with lower GABA/H2O and Gln/H2O in the dACC, suggesting disruption in the GABA-Gln-glutamate cycle. Further, altered Glu/GABA in the dACC in the PTSD group may indicate an excitatory-inhibitory imbalance. Further, lower GABA/H2O in the ACC was associated with poor sleep in the PTSD group. Treatments that restore GABAergic balance may be particularly effective in reducing sleep symptoms in PTSD.


Asunto(s)
Glutamina/metabolismo , Enfermedades Profesionales/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Veteranos/psicología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Estudios Transversales , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Enfermedades Profesionales/diagnóstico por imagen , Enfermedades Profesionales/psicología , Trastornos del Inicio y del Mantenimiento del Sueño/psicología , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/psicología , Estados Unidos
10.
Alcohol Clin Exp Res ; 43(2): 221-226, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537347

RESUMEN

BACKGROUND: Proton magnetic resonance spectroscopy (1 H-MRS) studies have demonstrated abnormal levels of a variety of neurometabolites in inpatients/outpatients with alcohol use disorder (AUD) following acute alcohol withdrawal relative to healthy controls. In contrast, few studies have compared neurometabolite levels between less severe, treatment-naïve AUD individuals and light drinkers (LD) or related them to recent alcohol consumption. The present study compared neurometabolite levels between treatment-naïve AUD and LD individuals. METHODS: Twenty treatment-naïve individuals with AUD and 20 demographically matched LD completed an 1 H-MRS scan, approximately 2.5 days following their last reported drink. 1 H-MRS data were acquired in dorsal anterior cingulate (dACC) using a 2-dimensional J-resolved point-resolved spectroscopy sequence. dACC neurometabolite levels, with a focus on glutamate, glutamine, and GABA, were compared between AUD and LD participants. The associations between metabolite levels and recent drinking were explored. RESULTS: AUD participants had significantly lower concentrations of GABA (Cohen's d = 0.79, p = 0.017) and glutamine (Cohen's d = 1.12, p = 0.005), but not glutamate (Cohen's d = 0.05, p = 0.893), relative to LD. As previously reported, AUD participants' glutamate and N-acetylaspartate concentrations were inversely associated with their number of heavy drinking days. In contrast, neither number of drinking (mean p = 0.56) nor heavy drinking (mean p = 0.47) days were associated with metabolite concentrations in LD. CONCLUSIONS: The present study demonstrated significantly lower levels of prefrontal γ-aminobutyric acid and glutamine in treatment-naïve individuals with AUD relative to LD. Whether these findings reflect the neurotoxic consequence and/or neuroadaptive response of alcohol consumption versus a predrinking trait, and therefore a more durable neurochemical disturbance, awaits elucidation from longitudinal studies.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estudios de Casos y Controles , Femenino , Giro del Cíngulo/metabolismo , Humanos , Masculino , Espectroscopía de Protones por Resonancia Magnética , Adulto Joven
11.
Sci Rep ; 8(1): 13200, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181656

RESUMEN

Metabolite-specific, scalar spin-spin coupling constant (J)-editing 1H MRS methods have become gold-standard for measuring brain γ-amino butyric acid (GABA) levels in human brain. Localized, two-dimensional (2D) 1H MRS technology offers an attractive alternative as it significantly alleviates the problem of severe metabolite signal overlap associated with standard 1D MRS and retains spectroscopic information for all MRS-detectable species. However, for metabolites found at low concentration, a direct, in vivo, comprehensive methods comparison is challenging and has not been reported to date. Here, we document an assessment of comparability between 2D 1H MRS and J-editing methods for measuring GABA in human brain. This clinical study is unique in that it involved chronic administration a GABA-amino transferase (AT) inhibitor (CPP-115), which induces substantial increases in brain GABA concentration, with normalization after washout. We report a qualitative and quantitative comparison between these two measurement techniques. In general, GABA concentration changes detected using J-editing were closely mirrored by the 2D 1H MRS time courses. The data presented are particularly encouraging considering recent 2D 1H MRS methodological advances are continuing to improve temporal resolution and spatial coverage for achieving whole-brain, multi-metabolite mapping.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Encéfalo/metabolismo , Inhibidores Enzimáticos/farmacología , Prolina/análogos & derivados , Ácido gamma-Aminobutírico/metabolismo , Adolescente , Adulto , Encéfalo/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Prolina/farmacología , Espectroscopía de Protones por Resonancia Magnética/métodos , Adulto Joven , Ácido gamma-Aminobutírico/análisis
12.
Artículo en Inglés | MEDLINE | ID: mdl-29756082

RESUMEN

Background: Suicide is a public health concern in the civilian and veteran populations. Stressful life events are precipitating factors for suicide. The neurochemical underpinnings of the association between stress/trauma and suicide risk are unclear, especially in regards to sex differences. We hypothesized that gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter may be a neurochemical candidate that is critical in the association between stress and suicide risk in veterans. Methods: Proton magnetic resonance spectroscopy (1H MRS) at 3.0 Tesla was used to measure in vivo neurochemistry in the anterior cingulate cortex (ACC; predominantly the dorsal ACC) of 81 veterans (16 females), including 57 (11 females) who endorsed past suicidal ideation (SI) and/or suicide attempt (SA) and 24 (5 females) with no history of SI and/or SA. Suicidal behavior (SB) was defined as the presence of SI and/or SA. Results: We observed no significant differences in GABA/ Creatine+phosphocreatine (Cr+PCr) between veterans with SB (SB+) and without SB (SB-). However, the female SB+ group showed significantly reduced GABA/Cr+PCr vs. the female SB- group. We observed a trend-level significant negative correlation between GABA/Cr+PCr and the defensive avoidance (DA) subscale on the Trauma Symptom Inventory (TSI) in the SB+ group. In contrast, the SB- group exhibited a positive relationship between the two variables. Furthermore, we found significant negative correlations between GABA/Cr+PCr and Hamilton Rating Scale for Depression (HAM-D) scores as well as between GABA/Cr+PCr and several subscales of the TSI in female veterans. Conclusions: This study suggests that reduced GABA/Cr+ PCr ratio in the ACC, which may be related to altered inhibitory capacity, may underlie suicide risk in female veterans. Further, the negative association between GABA/Cr+PCr and stress symptomatology and depression scores suggests that MRS studies may shed light on intermediate phenotypes of SB.

13.
Psychiatry Res Neuroimaging ; 276: 24-32, 2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-29723775

RESUMEN

Studies investigating the neurochemical changes that correspond with suicidal behavior (SB) have not yielded conclusive results. Suicide correlates such as aggression have been used to explore risk factors for SB. Yet the neurobiological basis for the association between aggression and SB is unclear. Aggression and SB are both prevalent in veterans relative to civilian populations. The current study evaluated the relationship between brain chemistry in the anterior (ACC) and the posterior cingulate cortex (POC), as well as the relationship between aggression and SB in a veteran population using proton magnetic resonance spectroscopy (1H-MRS). Single-voxel MRS data at 3 Tesla (T) were acquired from the ACC and POC voxels using a 2-dimensional J-resolved point spectroscopy sequence and quantified using the ProFit algorithm. Participants also completed a structured diagnostic interview and a clinical battery. Our results showed that the myoinositol (mI)/H2O ratio in the ACC and POC was significantly higher in veterans who reported SB when compared to veterans who did not. The two groups did not differ significantly with regard to other metabolites. Second, verbal aggression and SB measures positively correlated with mI/H2O in the ACC. Finally, verbal aggression mediated the relationship between mI/H2O in the ACC and SB.


Asunto(s)
Agresión , Giro del Cíngulo/metabolismo , Inositol/metabolismo , Intento de Suicidio/estadística & datos numéricos , Conducta Verbal , Veteranos , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectroscopía de Protones por Resonancia Magnética , Ideación Suicida , Adulto Joven
14.
J Affect Disord ; 225: 71-78, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28800423

RESUMEN

BACKGROUND: Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy (1H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. METHODS: Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. RESULTS: Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p < .001) and GABA (p < .01) in the ACC in bipolar youth, such that as WCST performance increased, both NAA and GABA levels increased. LIMITATIONS: Small sample size and lack of control for medications. CONCLUSIONS: These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions.


Asunto(s)
Ácido Aspártico/análogos & derivados , Trastorno Bipolar/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Ácido gamma-Aminobutírico/metabolismo , Adolescente , Ácido Aspártico/metabolismo , Trastorno Bipolar/patología , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Función Ejecutiva , Femenino , Giro del Cíngulo/patología , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Proyectos Piloto , Espectroscopía de Protones por Resonancia Magnética , Adulto Joven
15.
Neuropsychopharmacology ; 43(3): 646-654, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28741622

RESUMEN

CPP-115, a next-generation γ-amino butyric acid (GABA)-aminotransferase (AT) inhibitor, shows comparable pharmacokinetics, improved safety and tolerability, and a more favorable toxicity profile when compared with vigabatrin. The pharmacodynamic characteristics of CPP-115 remain to be evaluated. The present study employed state-of-the-art proton magnetic resonance spectroscopy techniques to measure changes in brain GABA+ (the composite resonance of GABA, homocarnosine, and macromolecules) concentrations in healthy subjects receiving oral daily doses of CPP-115 or placebo. Six healthy adult males were randomized to receive either single daily 80 mg doses of CPP-115 (n=4) or placebo (n=2) for 6, 10, or 14 days. Metabolite-edited spectra and two-dimensional J-resolved spectroscopy data were acquired from the parietal-occipital cortex and supplementary motor area in all subjects. Four scans were performed in each subject that included a predrug baseline measure, two scans during the dosing timeframe, and a final scan that occurred 1 week after drug cessation. CPP-115 induced robust and significant increases in brain GABA+ concentrations that ranged between 52 and 141% higher than baseline values. Elevated GABA+ concentrations returned to baseline values following drug clearance. Subjects receiving placebo showed no significant changes in GABA+ concentration. CPP-115-induced changes were exclusive to GABA and homocarnosine, and CPP-115 afforded brain GABA+ concentration changes comparable to or greater than previous vigabatrin spectroscopy studies in healthy epilepsy-naive subjects. The return to baseline GABA+ concentration indicates the reversible GABA-AT resynthesis following drug washout. These preliminary data warrant further spectroscopy studies that characterize the acute pharmacodynamic effects of CPP-115 with additional dose-descending measures.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Inhibidores Enzimáticos/farmacología , Prolina/análogos & derivados , Adulto , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Masculino , Prolina/farmacología , Espectroscopía de Protones por Resonancia Magnética , Factores de Tiempo
16.
Nat Commun ; 8(1): 1311, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101315

RESUMEN

Intrusive memories, images, and hallucinations are hallmark symptoms of psychiatric disorders. Although often attributed to deficient inhibitory control by the prefrontal cortex, difficulty in controlling intrusive thoughts is also associated with hippocampal hyperactivity, arising from dysfunctional GABAergic interneurons. How hippocampal GABA contributes to stopping unwanted thoughts is unknown. Here we show that GABAergic inhibition of hippocampal retrieval activity forms a key link in a fronto-hippocampal inhibitory control pathway underlying thought suppression. Subjects viewed reminders of unwanted thoughts and tried to suppress retrieval while being scanned with functional magnetic resonance imaging. Suppression reduced hippocampal activity and memory for suppressed content. 1H magnetic resonance spectroscopy revealed that greater resting concentrations of hippocampal GABA predicted better mnemonic control. Higher hippocampal, but not prefrontal GABA, predicted stronger fronto-hippocampal coupling during suppression, suggesting that interneurons local to the hippocampus implement control over intrusive thoughts. Stopping actions did not engage this pathway. These findings specify a multi-level mechanistic model of how the content of awareness is voluntarily controlled.


Asunto(s)
Hipocampo/fisiología , Represión Psicológica , Ácido gamma-Aminobutírico/fisiología , Adulto , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Memoria/fisiología , Modelos Neurológicos , Modelos Psicológicos , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología , Adulto Joven
17.
Alcohol Clin Exp Res ; 40(3): 491-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26853538

RESUMEN

BACKGROUND: Proton magnetic resonance spectroscopy ((1) H-MRS) studies have consistently found abnormal brain concentrations of N-acetylaspartate (NAA) and glutamate in individuals with alcohol use disorders (AUD) relative to light drinkers. However, most such studies have focused on individuals in treatment for severe alcohol dependence (AD), and few studies have investigated associations between neurochemical concentrations and recent alcohol consumption. This study focused on associations between recent drinking and prefrontal neurometabolite concentrations in nonsevere, non-treatment-seeking individuals with AUD. METHODS: Nineteen treatment-naïve alcohol-dependent individuals aged 21 to 40 completed a (1) H-MRS scan. Single-voxel (1) H-MRS spectra were acquired in dorsal anterior cingulate cortex (dACC) using a 2-dimensional J-resolved point resolved spectroscopy sequence. Associations between recent heavy drinking, assessed using the Timeline FollowBack, and dACC metabolite concentrations were estimated via regression controlling for within-voxel tissue composition. RESULTS: Participants provided a negative breathalyzer reading and reported between 1 and 5 days (M = 2.45, SD = 1.23) since their last drink. Number of heavy drinking days in the 14 days preceding the scan (M = 4.84, SD = 3.32) was significantly inversely associated with both glutamate/water (ß = -0.63, t(17) = -3.37, p = 0.004) and NAA/water concentrations (ß = -0.59, t(17) = -2.98, p = 0.008). CONCLUSIONS: This study extends the literature by demonstrating inverse associations between recent heavy drinking and dACC glutamate and NAA concentrations in a sample of nonsevere, non-treatment-seeking individuals with AD. These findings may support the hypothesis that amount of recent alcohol consumption may account for differences in neuronal metabolism, even in nonsevere, non-treatment-seeking alcoholics.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/diagnóstico por imagen , Alcoholismo/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Glutámico/metabolismo , Giro del Cíngulo/metabolismo , Adulto , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Adulto Joven
18.
Neurosurg Focus ; 38(3): E2, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25727224

RESUMEN

The preferred management of suspected low-grade gliomas (LGGs) has been disputed, and the implications of molecular changes for medical and surgical management of LGGs are important to consider. Current strategies that make use of molecular markers and imaging techniques and therapeutic considerations offer additional options for management of LGGs. Mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes suggest a role for this abnormal metabolic pathway in the pathogenesis and progression of these primary brain tumors. Use of magnetic resonance spectroscopy can provide preoperative detection of IDH-mutated gliomas and affect surgical planning. In addition, IDH1 and IDH2 mutation status may have an effect on surgical resectability of gliomas. The IDH-mutated tumors exhibit better prognosis throughout every grade of glioma, and mutation may be an early genetic event, preceding lineage-specific secondary and tertiary alterations that transform LGGs into secondary glioblastomas. The O6-methylguanine-DNAmethyltransferase (MGMT) promoter methylation and 1p19q codeletion status can predict sensitivity to chemotherapy and radiation in low- and intermediate-grade gliomas. Thus, these recent advances, which have led to a better understanding of how molecular, genetic, and epigenetic alterations influence the pathogenicity of the different histological grades of gliomas, can lead to better prognostication and may lead to specific targeted surgical interventions and medical therapies.


Asunto(s)
Neoplasias Encefálicas , Toma de Decisiones , Predisposición Genética a la Enfermedad/genética , Glioma , Procedimientos Neuroquirúrgicos/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Epigenómica , Glioma/diagnóstico , Glioma/genética , Glioma/cirugía , Humanos , Isocitrato Deshidrogenasa/genética , Mutación/genética , Proteínas Supresoras de Tumor/genética
19.
J Affect Disord ; 167: 25-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25082110

RESUMEN

BACKGROUND: Delayed diagnosis in bipolar disorder (BD) due to misdiagnosis as major depressive disorder (MDD) is a significant public health concern. Thus, identification of relevant diagnostic biomarkers is a critical unmet need, particularly early in the course of illness. The anterior cingulate cortex (ACC) is thought to play an important role in mood disorder pathophysiology. Case-control studies utilizing proton-1 magnetic resonance spectroscopy ((1)H-MRS) have found increased total choline levels in several brain regions in MDD. However, there are no published (1)H-MRS reports directly comparing adolescents with MDD and BD. We hypothesized that ACC choline levels would be increased in adolescents with unipolar versus bipolar depression. METHODS: We studied depressed adolescents with MDD (n=28; mean age 17.0±2.1 years) and BD (n=9; 17.3±3.1 years). A Siemens Verio 3-Tesla clinical MRI system was used to acquire scans, using a single-voxel PRESS sequence. The voxel (18.75 cm(3)) was positioned on the ACC in the midsagittal plane. To remove potential gender effects, only female adolescent participants were included. Data were analyzed using the ANOVA and post-hoc Tukey tests. RESULTS: A significantly increased ACC choline/creatine ratio was observed in participants with MDD (mean=0.253±0.021) compared to BD (mean=0.219±0.020) (p=0.0002). There were no significant differences in the other (1)H-MRS metabolites. LIMITATIONS: Cross sectional design, single gender sample, limited sample size. CONCLUSIONS: The present findings suggest that ACC total choline may have the potential to serve as a diagnostic biomarker in adolescent mood disorders.


Asunto(s)
Trastorno Bipolar/metabolismo , Colina/metabolismo , Trastorno Depresivo Mayor/metabolismo , Giro del Cíngulo/metabolismo , Adolescente , Análisis de Varianza , Trastorno Bipolar/diagnóstico , Creatina/metabolismo , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Tamaño de la Muestra , Adulto Joven
20.
NMR Biomed ; 27(8): 863-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24865447

RESUMEN

The accuracy of metabolite concentrations measured using in vivo proton ((1) H) MRS is enhanced following correction for spin-spin (T2 ) relaxation effects. In addition, metabolite proton T2 relaxation times provide unique information regarding cellular environment and molecular mobility. Echo-time (TE) averaging (1) H MRS involves the collection and averaging of multiple TE steps, which greatly simplifies resulting spectra due to the attenuation of spin-coupled and macromolecule resonances. Given the simplified spectral appearance and inherent metabolite T2 relaxation information, the aim of the present proof-of-concept study was to develop a novel data processing scheme to estimate metabolite T2 relaxation times from TE-averaged (1) H MRS data. Spectral simulations are used to validate the proposed TE-averaging methods for estimating methyl proton T2 relaxation times for N-acetyl aspartate, total creatine, and choline-containing compounds. The utility of the technique and its reproducibility are demonstrated using data obtained in vivo from the posterior-occipital cortex of 10 healthy control subjects. Compared with standard methods, distinct advantages of this approach include built-in macromolecule resonance attenuation, in vivo T2 estimates closer to reported values when maximum TE ≈ T2 , and the potential for T2 calculation of metabolite resonances otherwise inseparable in standard (1) H MRS spectra recorded in vivo.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Simulación por Computador , Creatina/metabolismo , Femenino , Humanos , Masculino , Metaboloma , Protones , Estándares de Referencia , Análisis de Regresión , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...