Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 196: 106523, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705491

RESUMEN

Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.


Asunto(s)
Envejecimiento , Encéfalo , Modelos Animales de Enfermedad , Síndrome de Down , Animales , Síndrome de Down/genética , Síndrome de Down/patología , Síndrome de Down/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Ratones , Masculino , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Cognición/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Ratones Transgénicos
2.
Neuropharmacology ; 224: 109350, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442649

RESUMEN

Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.


Asunto(s)
Diabetes Mellitus , Metformina , Síndrome de Rett , Animales , Femenino , Ratones , Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Metformina/farmacología , Síndrome de Rett/tratamiento farmacológico
3.
Biomedicines ; 9(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680593

RESUMEN

Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...