Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39246363

RESUMEN

Antisense oligonucleotides (ASOs) are a well-established therapeutic modality based on RNA interference, but low cellular uptake, limited ability to direct ASO trafficking, and a range of intracellular barriers to successful activity compromise both gene silencing outcomes and clinical translations. Herein, we demonstrate that polymers can increase ASO internalisation via intracellular trafficking pathways that are distinct from lipid-based delivery reagents. For the first time, we spatially define internalisation and dissociation stages in the polymer-mediated cytosolic delivery of ASOs using Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS), which enables visualisation of ASO localisation at the organelle level. We find that polymer-ASO complexes are imported into cells, from which free ASO enters the cytosol following complex dissociation. This information enables a better understanding of the intracellular trafficking pathways of nucleic acid therapeutics and may be exploited for therapeutic delivery to enhance the effectiveness of nucleic acid therapeutics in the future.

2.
Nat Nanotechnol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242807

RESUMEN

Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns. Barriers that delay translation include industrial scale-up or scale-down and good manufacturing practices, funding and navigating the regulatory environment. Here we propose the DELIVER framework comprising the core principles to be realized during preclinical development to promote clinical investigation of nanomedicines. The proposed framework comes with design, experimental, manufacturing, preclinical, clinical, regulatory and business considerations, which we recommend investigators to carefully review during early-stage nanomedicine design and development to mitigate risk and enable timely clinical success. By reducing development time and clinical trial failure, it is envisaged that this framework will help accelerate the clinical translation and maximize the impact of nanomedicines.

3.
Eur J Pharm Biopharm ; 203: 114453, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134099

RESUMEN

Increasing attention is being afforded to understanding the bidirectional relationship that exists between oral drugs and the gut microbiota. Often overlooked, however, is the impact that pharmaceutical excipients exert on the gut microbiota. Subsequently, in this study, we contrasted the pharmacokinetic performance and gut microbiota interactions between two commonly employed formulations for poorly soluble compounds, namely 1) an amorphous solid dispersion (ASD) stabilised by poly(vinyl pyrrolidone) K-30, and 2) a lipid nanoemulsion (LNE) comprised of medium chain glycerides and lecithin. The poorly soluble antipsychotic, lurasidone, was formulated with ASD and LNE due to its rate-limiting dissolution, poor oral bioavailability, and significant food effect. Both the ASD and LNE were shown to facilitate lurasidone supersaturation within in vitro dissolution studies simulating the gastrointestinal environment. This translated into profound improvements in oral pharmacokinetics in rats, with the ASD and LNE exerting comparable âˆ¼ 2.5-fold improvements in lurasidone bioavailability, compared to the pure drug. The oral formulations imparted contrasting effects on the gut microbiota, with the LNE depleting the richness and abundance of the microbial ecosystem, as evidenced through reductions in alpha diversity (Chao1 index) and operational taxonomical units (OTUs). In contrast, the ASD exerted a 'gut neutral' effect, whereby a mild enrichment of alpha diversity and OTUs was observed. Importantly, this suggests that ASDs are effective solubility-enhancing formulations that can be used without comprising the integrity of the gut microbiota - an integral consideration in the treatment of mental health disorders, such as schizophrenia, due to the role of the gut microbiota in regulating mood and cognition.


Asunto(s)
Antipsicóticos , Disponibilidad Biológica , Emulsiones , Microbioma Gastrointestinal , Lípidos , Clorhidrato de Lurasidona , Nanopartículas , Solubilidad , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Ratas , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacocinética , Antipsicóticos/farmacología , Antipsicóticos/química , Masculino , Clorhidrato de Lurasidona/administración & dosificación , Clorhidrato de Lurasidona/farmacocinética , Clorhidrato de Lurasidona/química , Administración Oral , Nanopartículas/química , Lípidos/química , Ratas Sprague-Dawley , Agua/química , Excipientes/química , Química Farmacéutica/métodos
4.
J Colloid Interface Sci ; 675: 660-669, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38991280

RESUMEN

The global rise in obesity necessitates innovative weight loss strategies. Naturally occurring smectite clays, such as montmorillonite (MMT), offer promise due to their unique properties that interfere with free fatty acid (FFA) liberation, reducing systemic uptake. However, the mechanisms of MMT-FFA interactions and their implications for weight management are undefined. This study investigates these interactions by adding MMT (10 % w/w) to in vitro lipolysis media containing medium chain triglycerides (MCTs), and monitoring FFA liberation using pH-stat titration. Nanoparticle tracking analysis (NTA) and synchrotron-based small-angle X-ray scattering (sSAXS) observed time-dependent structural changes, while electron microscopy examined clay morphology during digestion. A 35 % reduction in FFA liberation occurred after 25 min of digestion with MCT + MMT, with digestion kinetics following a biphasic model driven by calcium soap formation. NTA revealed a 17-fold decrease in vesicular structures with MCT + MMT, and sSAXS highlighted a rapid lamellar phase evolution linked to calcium soap formation. This acceleration is attributed to MMT's adsorption to unionized FFAs via hydrogen bonding, supported by TEM images showing a decrease in d-spacing, indicating FFA intercalation is not the main adsorption mechanism. These findings highlight MMT's potential as a novel intervention for reducing dietary lipid absorption in obesity and metabolic diseases.


Asunto(s)
Bentonita , Ácidos Grasos no Esterificados , Bentonita/química , Ácidos Grasos no Esterificados/química , Ácidos Grasos no Esterificados/metabolismo , Lipólisis , Triglicéridos/química , Triglicéridos/metabolismo , Tamaño de la Partícula
5.
Eur J Pharm Biopharm ; 202: 114420, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038525

RESUMEN

Pulmonary delivery of therapeutics (e.g., biologics, antibiotics, and chemotherapies) encapsulated in nanoparticles is desirable for the ability to provide a localised treatment, bypassing the harsh gastrointestinal environment. However, limited understanding of the biological fate of nanoparticles upon administration to the lungs hinders translation of pre-clinical investigations into viable therapies. A key knowledge gap is the impact of the pulmonary biomolecular corona on the functionality of nanoparticles. In this review, opportunities and challenges associated with pulmonary nanoparticle delivery are elucidated, highlighting the impact of the pulmonary biomolecular corona on immune recognition and nanoparticle internalisation in target cells. Recent investigations detailing the influence of proteins, lipids and mucin derived from pulmonary surfactants on nanoparticle behaviour are detailed. In addition, latest approaches in modulating plasma protein corona upon systemic delivery for biodistribution to the lungs are also discussed. Key examples of reengineering nanoparticle structure to mediate formation of biomolecule corona are provided. This review aims to provide a comprehensive understanding on biomolecular corona of nanoparticles for pulmonary delivery, while accentuating their significance for successful translation of newly investigated therapeutics.


Asunto(s)
Pulmón , Nanomedicina , Nanopartículas , Corona de Proteínas , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Nanomedicina/métodos , Nanopartículas/química , Animales , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Administración por Inhalación
6.
Biomater Sci ; 12(13): 3411-3422, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38809118

RESUMEN

Bacteria have evolved survival mechanisms that enable them to live within host cells, triggering persistent intracellular infections that present significant clinical challenges due to the inability for conventional antibiotics to permeate cell membranes. In recent years, antibiotic nanocarriers or 'nanoantibiotics' have presented a promising strategy for overcoming intracellular infections by facilitating cellular uptake of antibiotics, thus improving targeting to the bacteria. However, prior to reaching host cells, nanocarriers experience interactions with proteins that form a corona and alter their physiological response. The influence of this protein corona on the cellular uptake, drug release and efficacy of nanoantibiotics for intracellular infections is poorly understood and commonly overlooked in preclinical studies. In this study, protein corona influence on cellular uptake was investigated for two nanoparticles; liposomes and cubosomes in macrophage and epithelial cells that are commonly infected with pathogens. Studies were conducted in presence of fetal bovine serum (FBS) to form a biologically relevant protein corona in an in vitro setting. Protein corona impact on cellular uptake was shown to be nanoparticle-dependent, where reduced internalization was observed for liposomes, the opposite was observed for cubosomes. Subsequently, vancomycin-loaded cubosomes were explored for their drug delivery performance against intracellular small colony variants of Staphylococcus aureus. We demonstrated improved bacterial killing in macrophages, with greater reduction in bacterial viability upon internalization of cubosomes mediated by the protein corona. However, no differences in efficacy were observed in epithelial cells. Thus, this study provides insights and evidence to the role of protein corona in modulating the performance of nanoparticles in a dynamic manner; these findings will facilitate improved understanding and translation of future investigations from in vitro to in vivo.


Asunto(s)
Antibacterianos , Liposomas , Nanopartículas , Corona de Proteínas , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Animales , Humanos , Liposomas/química , Nanopartículas/química , Vancomicina/farmacología , Vancomicina/química , Vancomicina/administración & dosificación , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células RAW 264.7 , Pruebas de Sensibilidad Microbiana , Lípidos/química , Portadores de Fármacos/química
7.
Foods ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611345

RESUMEN

Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.

8.
Pharmaceutics ; 16(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543290

RESUMEN

The opportunistic bacteria growing in biofilms play a decisive role in the pathogenesis of chronic infectious diseases. Biofilm-dwelling bacteria behave differently than planktonic bacteria and are likely to increase resistance and tolerance to antimicrobial therapeutics. Antimicrobial adjuvants have emerged as a promising strategy to combat antimicrobial resistance (AMR) and restore the efficacy of existing antibiotics. A combination of antibiotics and potential antimicrobial adjuvants, (e.g., extracellular polymeric substance (EPS)-degrading enzymes and quorum sensing inhibitors (QSI) can improve the effects of antibiotics and potentially reduce bacterial resistance). In addition, encapsulation of antimicrobials within nanoparticulate systems can improve their stability and their delivery into biofilms. Lipid nanocarriers (LNCs) have been established as having the potential to improve the efficacy of existing antibiotics in combination with antimicrobial adjuvants. Among them, liquid crystal nanoparticles (LCNPs), liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) are promising due to their superior properties compared to traditional formulations, including their greater biocompatibility, higher drug loading capacity, drug protection from chemical or enzymatic degradation, controlled drug release, targeted delivery, ease of preparation, and scale-up feasibility. This article reviews the recent advances in developing various LNCs to co-deliver some well-studied antimicrobial adjuvants combined with antibiotics from different classes. The efficacy of various combination treatments is compared against bacterial biofilms, and synergistic therapeutics that deserve further investigation are also highlighted. This review identifies promising LNCs for the delivery of combination therapies that are in recent development. It discusses how LNC-enabled co-delivery of antibiotics and adjuvants can advance current clinical antimicrobial treatments, leading to innovative products, enabling the reuse of antibiotics, and providing opportunities for saving millions of lives from bacterial infections.

9.
Clin Transl Immunology ; 13(2): e1492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375329

RESUMEN

γδ T cells are a unique subset of T lymphocytes, exhibiting features of both innate and adaptive immune cells and are involved with cancer immunosurveillance. They present an attractive alternative to conventional T cell-based immunotherapy due, in large part, to their lack of major histocompatibility (MHC) restriction and ability to secrete high levels of cytokines with well-known anti-tumour functions. To date, clinical trials using γδ T cell-based immunotherapy for a range of haematological and solid cancers have yielded limited success compared with in vitro studies. This inability to translate the efficacy of γδ T-cell therapies from preclinical to clinical trials is attributed to a combination of several factors, e.g. γδ T-cell agonists that are commonly used to stimulate populations of these cells have limited cellular uptake yet rely on intracellular mechanisms; administered γδ T cells display low levels of tumour-infiltration; and there is a gap in the understanding of γδ T-cell inhibitory receptors. This review explores the discrepancy between γδ T-cell clinical and preclinical performance and offers viable avenues to overcome these obstacles. Using more direct γδ T-cell agonists, encapsulating these agonists into lipid nanocarriers to improve their pharmacokinetic and pharmacodynamic profiles and the use of combination therapies to overcome checkpoint inhibition and T-cell exhaustion are ways to bridge the gap between preclinical and clinical success. Given the ability to overcome these limitations, the development of a more targeted γδ T-cell agonist-checkpoint blockade combination therapy has the potential for success in clinical trials which has to date remained elusive.

10.
Drug Deliv Transl Res ; 14(6): 1725-1734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341386

RESUMEN

Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.


Asunto(s)
Antibacterianos , Sistemas de Liberación de Medicamentos , Humanos , Antibacterianos/administración & dosificación , Antibacterianos/química , Animales , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana , Bacterias/efectos de los fármacos , Tolerancia a Medicamentos
11.
Pharmaceutics ; 16(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38399263

RESUMEN

MP-A08 is a novel sphingosine kinase 1 (SPHK1) inhibitor with activity against acute myeloid leukemia (AML). A rationally designed liposome-based encapsulation and delivery system has been shown to overcome the physicochemical challenges of MP-A08 and enable its effective delivery for improved efficacy and survival of mice engrafted with human AML in preclinical models. To establish therapies that overcome AML's heterogeneous nature, here we explored the combination of MP-A08-loaded liposomes with both the standard chemotherapy, cytarabine, and the targeted therapy, venetoclax, against human AML cell lines. Cytarabine (over the dose range of 0.1-0.5 µM) in combination with MP-A08 liposomes showed significant synergistic effects (as confirmed by the Chou-Talalay Combination Index) against the chemosensitised human AML cell lines MV4-11 and OCI-AML3. Venetoclax (over the dose range of 0.5-250 nM) in combination with MP-A08 liposomes showed significant synergistic effects against the chemosensitised human AML cell lines, particularly in venetoclax-resistant human AML cells. This strong synergistic effect is due to multiple mechanisms of action, i.e., inhibiting MCL-1 through SPHK1 inhibition, leading to ceramide accumulation, activation of protein kinase R, ATF4 upregulation, and NOXA activation, ultimately resulting in MCL-1 degradation. These combination therapies warrant further consideration and investigation in the search for a more comprehensive treatment strategy for AML.

12.
ACS Infect Dis ; 10(2): 337-349, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38295053

RESUMEN

Bacterial pathogens are constantly evolving to outsmart the host immune system and antibiotics developed to eradicate them. One key strategy involves the ability of bacteria to survive and replicate within host cells, thereby causing intracellular infections. To address this unmet clinical need, researchers are adopting new approaches, such as the development of novel molecules that can penetrate host cells, thus exerting their antimicrobial activity intracellularly, or repurposing existing antibiotics using nanocarriers (i.e., nanoantibiotics) for site-specific delivery. However, inconsistency in information reported across published studies makes it challenging for scientific comparison and judgment of experiments for future direction by researchers. Together with the lack of reproducibility of experiments, these inconsistencies limit the translation of experimental results beyond pre-clinical evaluation. Minimum information guidelines have been instrumental in addressing such challenges in other fields of biomedical research. Guidelines and recommendations provided herein have been designed for researchers as essential parameters to be disclosed when publishing their methodology and results, divided into four main categories: (i) experimental design, (ii) establishing an in vitro model, (iii) assessment of efficacy of novel therapeutics, and (iv) statistical assessment. These guidelines have been designed with the intention to improve the reproducibility and rigor of future studies while enabling quantitative comparisons of published studies, ultimately facilitating translation of emerging antimicrobial technologies into clinically viable therapies that safely and effectively treat intracellular infections.


Asunto(s)
Antiinfecciosos , Proyectos de Investigación , Reproducibilidad de los Resultados , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias
13.
Int J Pharm ; 648: 123614, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979632

RESUMEN

Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.


Asunto(s)
Microbioma Gastrointestinal , Ratas , Animales , Ratas Sprague-Dawley , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas , Administración Oral , Disponibilidad Biológica , Solubilidad , Lípidos , Emulsiones
14.
J Control Release ; 363: 507-524, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797891

RESUMEN

Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.


Asunto(s)
Vasos Linfáticos , Profármacos , Sistemas de Liberación de Medicamentos , Vasos Linfáticos/metabolismo , Sistema Linfático/metabolismo , Intestinos
15.
Antibiotics (Basel) ; 12(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37760702

RESUMEN

Lipid liquid crystalline nanoparticles (LCNPs) are unique nanocarriers that efficiently deliver antimicrobials through biological barriers. Yet, their wide application as an antimicrobial delivery system is hindered by their poor stability in aqueous dispersions. The production of dried LCNP powder via lyophilization is a promising approach to promote the stability of LCNPs. However, the impact of the process on the functionality of the loaded hydrophobic cargoes has not been reported yet. Herein, we investigated the potential of lyophilization to produce dispersible dry LCNPs loaded with a hydrophobic antimicrobial compound, gallium protoporphyrin (GaPP). The effect of lyophilization on the physicochemical characteristics and the antimicrobial activity of rehydrated GaPP-LCNPs was studied. The rehydrated GaPP-LCNPs retained the liquid crystalline structure and were monodisperse (PDI: 0.27 ± 0.02), with no significant change in nanoparticle concentration despite the minor increase in hydrodynamic diameter (193 ± 6.5 compared to 173 ± 4.2 prior to freeze-drying). Most importantly, the efficacy of the loaded GaPP as an antimicrobial agent and a photosensitizer was not affected as similar MIC values were obtained against S. aureus (0.125 µg/mL), with a singlet oxygen quantum yield of 0.72. These findings indicate the suitability of lyophilization to produce a dry form of LCNPs and pave the way for future studies to promote the application of LCNPs as an antimicrobial delivery system.

16.
Mol Pharm ; 20(8): 3937-3946, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463151

RESUMEN

Acute myeloid leukemia (AML) kills 75% of patients and represents a major clinical challenge with a need to improve on current treatment approaches. Targeting sphingosine kinase 1 with a novel ATP-competitive-inhibitor, MP-A08, induces cell death in AML. However, limitations in MP-A08's "drug-like properties" (solubility, biodistribution, and potency) hinder its pathway to the clinic. This study demonstrates a liposome-based delivery system of MP-A08 that exhibits enhanced MP-A08 potency against AML cells. MP-A08-liposomes increased MP-A08 efficacy against patient AML cells (>140-fold) and significantly prolonged overall survival of mice with human AML disease (P = 0.03). The significant antileukemic property of MP-A08-liposomes could be attributed to its enhanced specificity, bioaccessibility, and delivery to the bone marrow, as demonstrated in the pharmacokinetic and biodistribution studies. Our findings indicate that MP-A08-liposomes have potential as a novel treatment for AML.


Asunto(s)
Leucemia Mieloide Aguda , Liposomas , Humanos , Ratones , Animales , Liposomas/uso terapéutico , Distribución Tisular , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Línea Celular Tumoral
17.
Expert Opin Drug Deliv ; 20(10): 1315-1331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405390

RESUMEN

INTRODUCTION: The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED: This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION: Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Preparaciones Farmacéuticas/metabolismo , Probióticos/uso terapéutico
18.
Pharmaceutics ; 15(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37514072

RESUMEN

Paclitaxel (PTX) and 5-fluorouracil (5-FU) are clinically relevant chemotherapeutics, but both suffer a range of biopharmaceutical challenges (e.g., either low solubility or permeability and limited controlled release from nanocarriers), which reduces their effectiveness in new medicines. Anticancer drugs have several major limitations, which include non-specificity, wide biological distribution, a short half-life, and systemic toxicity. Here, we investigate the potential of liposome-micelle-hybrid (LMH) carriers (i.e., drug-loaded micelles encapsulated within drug-loaded liposomes) to enhance the co-formulation and delivery of PTX and 5-FU, facilitating new delivery opportunities with enhanced chemotherapeutic performance. We focus on the combination of liposomes and micelles for co-delivery of PTX and 5_FU to investigate increased drug loading, improved solubility, and transport/permeability to enhance chemotherapeutic potential. Furthermore, combination chemotherapy (i.e., containing two or more drugs in a single formulation) may offer improved pharmacological performance. Compared with individual liposome and micelle formulations, the optimized PTX-5FU-LMH carriers demonstrated increased drug loading and solubility, temperature-sensitive release, enhanced permeability in a Caco-2 cell monolayer model, and cancer cell eradication. LMH has significant potential for cancer drug delivery and as a next-generation chemotherapeutic.

19.
Expert Opin Drug Deliv ; 20(10): 1297-1314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37307224

RESUMEN

INTRODUCTION: Increasing attention is being afforded to understanding the bidirectional relationships that exist between oral medications and the gut microbiota, in an attempt to optimize pharmacokinetic performance and mitigate unwanted side effects. While a wealth of research has investigated the direct impact of active pharmaceutical ingredients (APIs) on the gut microbiota, the interactions between inactive pharmaceutical ingredients (i.e. excipients) and the gut microbiota are commonly overlooked, despite excipients typically representing over 90% of the final dosage form. AREAS COVERED: Known excipient-gut microbiota interactions for various classes of inactive pharmaceutical ingredients, including solubilizing agents, binders, fillers, sweeteners, and color additives, are reviewed in detail. EXPERT OPINION: Clear evidence indicates that orally administered pharmaceutical excipients directly interact with gut microbes and can either positively or negatively impact gut microbiota diversity and composition. However, these relationships and mechanisms are commonly overlooked during drug formulation, despite the potential for excipient-microbiota interactions to alter drug pharmacokinetics and interfere with host metabolic health. The insights derived from this review will inform pharmaceutical scientists with the necessary design considerations for mitigating potential adverse pharmacomicrobiomic interactions when formulating oral dosage forms, ultimately providing clear avenues for improving therapeutic safety and efficacy.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Humanos , Excipientes , Química Farmacéutica , Composición de Medicamentos
20.
Pharmaceutics ; 15(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37111523

RESUMEN

Intracellular bacteria are inaccessible and highly tolerant to antibiotics, hence are a major contributor to the global challenge of antibiotic resistance and recalcitrant clinical infections. This, in tandem with stagnant antibacterial discovery, highlights an unmet need for new delivery technologies to treat intracellular infections more effectively. Here, we compare the uptake, delivery, and efficacy of rifampicin (Rif)-loaded mesoporous silica nanoparticles (MSN) and organo-modified (ethylene-bridged) MSN (MON) as an antibiotic treatment against small colony variants (SCV) Staphylococcus aureus (SA) in murine macrophages (RAW 264.7). Macrophage uptake of MON was five-fold that of equivalent sized MSN and without significant cytotoxicity on human embryonic kidney cells (HEK 293T) or RAW 264.7 cells. MON also facilitated increased Rif loading with sustained release, and seven-fold increased Rif delivery to infected macrophages. The combined effects of increased uptake and intracellular delivery of Rif by MON reduced the colony forming units of intracellular SCV-SA 28 times and 65 times compared to MSN-Rif and non-encapsulated Rif, respectively (at a dose of 5 µg/mL). Conclusively, the organic framework of MON offers significant advantages and opportunities over MSN for the treatment of intracellular infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...