Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 942: 173342, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38848911

RESUMEN

The climate change scenarios RCP 4.5 and RCP 8.5, with a representative concentration pathway for stabilization of radiative forcing of 4.5 W m-2 and 8.5 W m-2 by 2100, respectively, predict an increase in temperature of 1-4.5° Celsius for Europe and a simultaneous shift in precipitation patterns leading to increased drought frequency and severity. The negative consequences of such changes on tree growth on dry sites or at the dry end of a tree species distribution are well-known, but rarely quantified across large gradients. In this study, the growth of Quercus robur and Quercus petraea (Q. spp.) and Pinus sylvestris in pure and mixed stands was predicted for a historical scenario and the two climate change scenarios RCP 4.5 and RCP 8.5 using the individual tree growth model PrognAus. Predictions were made along an ecological gradient ranging from current mean annual temperatures of 5.5-11.4 °C and with mean annual precipitation sums of 586-929 mm. Initial data for the simulation consisted of 23 triplets established in pure and mixed stands of Q. spp. and P. sylvestris. After doing the simulations until 2100, we fitted a linear mixed model using the predicted volume in the year 2100 as response variable to describe the general trends in the simulation results. Productivity decreased for both Q. spp. and P. sylvestris with increasing temperature, and more so, for the warmer sites of the gradient. P. sylvestris is the more productive tree species in the current climate scenario, but the competitive advantage shifts to Q. spp., which is capable to endure very high negative water potentials, for the more severe climate change scenario. The Q. spp.-P. sylvestris mixture presents an intermediate resilience to increased scenario severity. Enrichment of P. sylvestris stands by creating mixtures with Q. spp., but not the opposite, might be a right silvicultural adaptive strategy, especially at lower latitudes. Tree species mixing can only partly compensate productivity losses due to climate change. This may, however, be possible in combination with other silvicultural adaptation strategies, such as thinning and uneven-aged management.


Asunto(s)
Cambio Climático , Pinus sylvestris , Quercus , Quercus/crecimiento & desarrollo , Quercus/fisiología , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/fisiología , Árboles , Sequías , Temperatura , Bosques
3.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390215

RESUMEN

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

4.
Sci Total Environ ; 913: 169692, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160816

RESUMEN

To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.


Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , Bosques , Árboles , Cambio Climático , Europa Oriental , Europa (Continente)
5.
Sci Rep ; 13(1): 15373, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716997

RESUMEN

Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.


Asunto(s)
Ecosistema , Bosques , Europa (Continente) , Europa Oriental , Árboles
6.
Eur J For Res ; : 1-13, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37363183

RESUMEN

Forest stand and environmental factors influence soil organic carbon (SOC) storage, but little is known about their relative impacts in different soil layers. Moreover, how environmental factors modulate the impact of stand factors, particularly species mixing, on SOC storage, is largely unexplored. In this study, conducted in 21 forest triplets (two monocultures of different species and their mixture on the same site) distributed in Europe, we tested the hypothesis that stand factors (functional identity and diversity) have stronger effects on topsoil (FF + 0-10 cm) C storage than environmental factors (climatic water availability, clay + silt content, oxalate-extractable Al-Alox) but that the opposite occurs in the subsoil (10-40 cm). We also tested the hypothesis that functional diversity improves SOC storage under high climatic water availability, clay + silt contents, and Alox. We characterized functional identity as the basal area proportion of broadleaved species (beech and/or oak), and functional diversity as the product of broadleaved and conifer (pine) proportions. The results show that functional identity was the main driver of topsoil C storage, while climatic water availability had the largest control on subsoil C storage. Functional diversity decreased topsoil C storage under increasing climatic water availability, but the opposite was observed in the subsoil. Functional diversity effects on topsoil C increased with increasing clay + silt content, while its effects on subsoil C were negative at increasing Alox content. This suggests that functional diversity effect on SOC storage changes along gradients in environmental factors and the direction of effects depends on soil depth.

7.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37182772

RESUMEN

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Asunto(s)
Ecosistema , Fagus , Cambio Climático , Bosques , Árboles
8.
Ecol Appl ; 33(6): e2890, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37212374

RESUMEN

Outbreaks of the spongy moth Lymantria dispar can have devastating impacts on forest resources and ecosystems. Lepidoptera-specific insecticides, such as Bacillus thuringiensis var. kurstaki (BTK) and tebufenozide, are often deployed to prevent heavy defoliation of the forest canopy. While it has been suggested that using BTK poses less risk to non-target Lepidoptera than leaving an outbreak untreated, in situ testing of this assumption has been impeded by methodological challenges. The trade-offs between insecticide use and outbreaks have yet to be addressed for tebufenozide, which is believed to have stronger side effects than BTK. We investigated the short-term trade-offs between tebufenozide treatments and no-action strategies for the non-target herbivore community in forest canopies. Over 3 years, Lepidoptera and Symphyta larvae were sampled by canopy fogging in 48 oak stands in southeast Germany during and after a spongy moth outbreak. Half of the sites were treated with tebufenozide and changes in canopy cover were monitored. We contrasted the impacts of tebufenozide and defoliator outbreaks on the abundance, diversity, and functional structure of chewing herbivore communities. Tebufenozide treatments strongly reduced Lepidoptera up to 6 weeks after spraying. Populations gradually converged back to control levels after 2 years. Shelter-building species dominated caterpillar assemblages in treated plots in the post-spray weeks, while flight-dimorphic species were slow to recover and remained underrepresented in treated stands 2 years post-treatment. Spongy moth outbreaks had minor effects on leaf chewer communities. Summer Lepidoptera decreased only when severe defoliation occurred, whereas Symphyta declined 1 year after defoliation. Polyphagous species with only partial host plant overlap with the spongy moth were absent from heavily defoliated sites, suggesting greater sensitivity of generalists to defoliation-induced plant responses. These results demonstrate that both tebufenozide treatments and spongy moth outbreaks alter canopy herbivore communities. Tebufenozide had a stronger and longer lasting impact, but it was restricted to Lepidoptera, whereas the outbreak affected both Lepidoptera and Symphyta. These results are tied to the fact that only half of the outbreak sites experienced severe defoliation. This highlights the limited accuracy of current defoliation forecast methods, which are used as the basis for the decision to spray insecticides.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Ecosistema
9.
J Environ Manage ; 337: 117772, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36958279

RESUMEN

Mangrove forests, some of the most carbon-dense ecosystems on Earth, play an important role in climate change mitigation through storing carbon in the soil. However, increasing anthropogenic pressures and sea level rise are likely to alter mangrove forest structure and functions, including the major source of carbon in mangrove ecosystems - below-ground soil carbon stocks (BSCS). Although estimating soil carbon stocks has been a popular practice in the mangroves, but poorly understood the (I) the linkage between BSCS and key ecosystem drivers (i.e., biotic, abiotic, and functional) and in (II) determining the pathways of how BSCS and multiple forest variables interact along stress gradients. This lack of understanding limits our ability to predict ecosystem carbon dynamics under future changes in climate. Here, we aimed to understand how abiotic factors (such as salinity, canopy gap fraction, nutrients, and soil pH), biotic factors (e.g., structural parameters, canopy packing, and leaf area index, LAI), and forest functional variables (e.g., growth and aboveground biomass stocks, AGB) affect BSCS (i.e., soil organic carbon, SOC, and root carbon, RC) using spatiotemporal data collected from the Sundarbans Mangrove Forest (SMF) in Bangladesh. We observed that BSCS decreased significantly with increasing salinity (e.g., from 70.6 Mg C ha-1 in the low-saline zone to 44.6 Mg C ha-1 in the high-saline zone). In contrast, the availability of several macronutrients (such as nitrogen, phosphorous, and potassium), LAI, species diversity, AGB, and growth showed a significant positive effect on SOC and RC. Stand properties, including tree height, basal area, density, canopy packing, and structural diversity, had a non-significant but positive impact on RC, while tree height and basal area significantly influenced SOC. Pathway analysis showed that salinity affects BSCS variability directly and indirectly by regulating stand structure and restricting nutrients and forest functions, although basal area, nutrients, and LAI directly enhance RC stocks. Our results indicate that an increase in nutrient content, canopy density, species diversity, and leaf area index can enhance BSCS, as they improve forest functions and contribute to a better understanding of the underlying mechanisms.


Asunto(s)
Ecosistema , Humedales , Suelo/química , Carbono/análisis , Bosques , Biomasa
10.
Sci Total Environ ; 868: 161601, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36646222

RESUMEN

Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.


Asunto(s)
Fagus , Picea , Árboles/fisiología , Ecosistema , Sequías , Cambio Climático , Bosques , Picea/fisiología , Fagus/fisiología , Agua
11.
Sci Rep ; 13(1): 1451, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702865

RESUMEN

Large-scale urban growth has modified the hydrological cycle of our cities, causing greater and faster runoff. Urban forests (UF), i.e. the stock of trees and shrubs, can substantially reduce runoff; still, how climate, tree functional types influence rainfall partitioning into uptake and runoff is mostly unknown. We analyzed 92 published studies to investigate: interception (I), transpiration (T), soil infiltration (IR) and the subsequent reduction in runoff. Trees showed the best runoff protection compared to other land uses. Within functional types, conifers provided better protection on an annual scale through higher I and T but broadleaved species provided better IR. Regarding tree traits, leaf area index (LAI) showed a positive influence for both I and T. For every unit of LAI increment, additional 5% rainfall partition through T (3%) and I (2%) can be predicted. Overall, runoff was significantly lower under mixed species stands. Increase of conifer stock to 30% in climate zones with significant winter precipitation and to 20% in areas of no dry season can reduce runoff to an additional 4%. The study presented an overview of UF potential to partition rainfall, which might help to select species and land uses in different climate zones for better storm-water management.


Asunto(s)
Tracheophyta , Agua , Bosques , Lluvia , Árboles , Ciclo Hidrológico , Movimientos del Agua , Abastecimiento de Agua
12.
Sci Total Environ ; 853: 158662, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089020

RESUMEN

Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data. Therefore, based on extensive spatiotemporal mangrove data covering a large-scale salinity gradient, collected from the world's largest single tract mangrove ecosystem - the Bangladesh Sundarbans, we, aimed to examine (QI) how rising salinity influences forest structure (e.g., stand density, diversity, leaf area index (LAI), etc.), functions (e.g., carbon stocks, forest growth), nutrients availability, and functional traits (e.g., specific leaf area, wood density). We also wanted to know (QII) how forest functions interact (direct vs. indirect) with biotic (i.e., stand structure, species richness, etc.) and abiotic factors (salinity, nutrients, light availability, etc.). We also asked (QIII) whether the functional variable decreases disproportionately with salinity and applied the power-law (i.e., Y = a Xb) to the salinity and functional variable relationships. In this study, we found that rises in salinity significantly impede forest growth and produce less productive ecosystems dominated by dwarf species while reducing stand structural properties (i.e., tree height, basal area, dominant tree height, LAI), soil carbon (organic and root carbon), and macronutrient availability in the soil (e.g., NH4+, P, and K). Besides, species-specific leaf area (related to resource acquisition) also decreased with salinity, whereas wood density (related to resource conservation) increased. We observed a declining abundance of the salt-intolerant climax species (Heritiera fomes) and dominance of the salt-tolerant species (Excoecaria agallocha, Ceriops decandra) in the high saline areas. In the case of biotic and abiotic factors, salinity and salinity-driven gap fraction (high transmission of light) had a strong negative impact on functional variables, while nutrients and LAI had a positive impact. In addition, the power-law explained the consistent decline of functional variables with salinity. Our study disentangles the negative effects of salinity on site quality in the Sundarbans mangrove ecosystem, and we recognize that nutrient availability and LAI are likely to buffer the less salt-tolerant species to maintain the ability to sequester carbon with sea-level rise. These novel findings advance our understanding of how a single stressor-salinity-can shape mangrove structure, functions, and productivity and offer decision makers a much-needed scientific basis for developing pragmatic ecosystem management and conservation plans in highly stressed coastal ecosystems across the globe.


Asunto(s)
Ecosistema , Humedales , Salinidad , Suelo/química , Carbono
13.
Glob Chang Biol ; 28(23): 6889-6905, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36039835

RESUMEN

After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.


Asunto(s)
Picea , Sequías , Carbono , Dióxido de Carbono , Árboles , Agua
14.
Eur J For Res ; 141(3): 467-480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35469155

RESUMEN

While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe. We used 21 triplets (5 beech-oak, 8 pine-beech, 8 pine-oak mixed stands, and their respective monocultures at the same sites) in seven European countries. We computed biomass C stocks from total stand inventories and species-specific allometric equations, and soil organic C data down to 40 cm depth. On average, the broadleaved species stored more C in aboveground woody biomass than soil, while C storage in pine was equally distributed between both components. Stand density had a strong effect on C storage in tree woody biomass but not in the soil. After controlling for stand basal area, the mixed stands had, on average, similar total C stocks (in aboveground woody biomass + coarse roots + soil) to the most performing monocultures. Although species composition and stand density affect total C stocks and its partitioning between aboveground woody biomass and soil, a large part of variability in soil C storage was unrelated to stand characteristics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10342-022-01453-9.

15.
Sci Rep ; 12(1): 671, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027622

RESUMEN

Green infrastructure (GI) has emerged as a feasible strategy for promoting adaptive capacities of cities to climate change by alleviating urban heat island (UHI) and thus heat stress for humans. However, GI can also intensify the winter cold stress. To understand the extent of UHI within a city as well as the link between outdoor thermal stress both diurnally and seasonally, we carried out an empirical study in Würzburg, Germany from 2018 to 2020. At sub-urban sites, relative humidity and wind speed (WS) was considerably higher and air temperature (AT) lower compared to the inner city sites. Mean AT of inner city sites were higher by 1.3 °C during summer and 5 °C during winter compared to sub-urban sites. The magnitude followed the spatial land use patterns, in particular the amount of buildings. Consequently, out of 97 hot days (AT > 30 °C) in 3 years, 9 days above the extreme threshold of wet bulb globe temperature of 35 °C were recorded at a centre location compared to none at a sub-urban site. Extreme heat stress could be halved with 30-40% cover of greenspaces including grass lawns, green roofs, and green walls with little compromise in increasing winter cold stress.

16.
J Theor Biol ; 512: 110567, 2021 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-33359208

RESUMEN

Many herbaceous plants feature remarkably regular arrangements of lateral organs along the central axis. These phyllotactic patterns are generated by a constant divergence angle between successive buds (or whorls thereof) that first appears at the shoot apircal meristem and is maintained across later ontogentic stages when it can be observed at the macroscopic scale. Do the branches along a tree trunk exhibit similar patterns? Here we use branch skeleton data derived from terrestrial laser scans to empirically estimate the distributions of the divergence angles between successive branches along the trunks of mature European beech, Norway spruce, and Scots pine trees. We find that rather than clustering around a particular value, species-specific branch divergence angles feature statistical properties characteristic of a uniform distribution. We hypothesise this to be the result of the stochasticity in bud development and branch shedding, and provide a rigorous mathematical proof that even when the divergence angle between successive lateral buds is constant, the observed distribution of branch divergence angles will approximate a uniform distribution if bud mortality and branch shedding rates are high.


Asunto(s)
Picea , Pinus sylvestris , Pinus , Meristema , Árboles
17.
Glob Chang Biol ; 26(10): 5796-5815, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32645233

RESUMEN

At two forest sites in Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.), we investigated changes of topsoil chemistry during the recent 40 years by soil inventories conducted on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, we monitored the nutritional status of both stands from 1964 until 2019 and quantified stand growth during the monitoring period by repeated stand inventories. Moreover, we monitored climate variables (air temperature and precipitation) and calculated annual climatic water balances from 1991 to 2019. Atmospheric nitrogen (N) and sulfur (S) deposition between 1964 and 2019 was estimated for the period 1969-2019 by combining annual deposition measurements conducted in 1985-1987 and 2004 with long-term deposition records from long-term forest monitoring stations. We investigated interrelations between topsoil chemistry, stand nutrition, stand growth, deposition, and climate trends. At both sites, the onset of the new millennium was a turning point of important biogeochemical processes. Topsoil acidification turned into re-alkalinization, soil organic matter (SOM) accumulation stopped, and likely turned into SOM depletion. In the new millennium, topsoil stocks of S and plant-available phosphorus (P) as well as S and P concentrations in Scots pine foliage decreased substantially; yet, age-referenced stand growth remained at levels far above those expected from yield table data. Tree P and S nutrition as well as climate change (increased temperature and drought stress) have replaced soil acidification as major future challenges for both forests. Understanding of P and S cycling and water fluxes in forest ecosystems, and consideration of these issues in forest management is important for successfully tackling the new challenges. Our study illustrates the importance of long-term forest monitoring to identify slow, but substantial changes of forest biogeochemistry driven by natural and anthropogenic global change.


Asunto(s)
Ecosistema , Pinus sylvestris , Cambio Climático , Bosques , Alemania , Nitrógeno/análisis , Suelo , Árboles
18.
Proc Natl Acad Sci U S A ; 117(22): 12192-12200, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32393624

RESUMEN

Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.


Asunto(s)
Cambio Climático , Frío , Hojas de la Planta/crecimiento & desarrollo , Estaciones del Año , Árboles/crecimiento & desarrollo , Asia , Europa (Continente) , Bosques , América del Norte , Fenotipo , Análisis Espacio-Temporal , Temperatura
19.
Int J Biometeorol ; 62(5): 795-808, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29218447

RESUMEN

Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.


Asunto(s)
Clima , Tilia/crecimiento & desarrollo , Berlin , Vivienda , Modelos Lineales , Lluvia , Temperatura , Árboles/crecimiento & desarrollo
20.
Sci Rep ; 7(1): 15403, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133790

RESUMEN

Despite the importance of urban trees, their growth reaction to climate change and to the urban heat island effect has not yet been investigated with an international scope. While we are well informed about forest growth under recent conditions, it is unclear if this knowledge can be simply transferred to urban environments. Based on tree ring analyses in ten metropolises worldwide, we show that, in general, urban trees have undergone accelerated growth since the 1960s. In addition, urban trees tend to grow more quickly than their counterparts in the rural surroundings. However, our analysis shows that climate change seems to enhance the growth of rural trees more than that of urban trees. The benefits of growing in an urban environment seem to outweigh known negative effects, however, accelerated growth may also mean more rapid ageing and shortened lifetime. Thus, city planners should adapt to the changed dynamics in order to secure the ecosystem services provided by urban trees.


Asunto(s)
Planificación de Ciudades , Cambio Climático , Árboles/crecimiento & desarrollo , Ciudades , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...