RESUMEN
BACKGROUND: Identification of non-human leukocyte antigen (HLA) genetic risk factors could improve survival after allogeneic blood or marrow transplant (BMT) through matching at additional loci or individualizing risk prediction. We hypothesized that non-HLA loci contributed significantly to 1-year overall survival (OS), disease related mortality (DRM) or transplant related mortality (TRM) after unrelated donor (URD)BMT. METHODS: We performed a genome-wide association study (GWAS) in 2,887 acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and acute lymphoblastic leukemia (ALL) patients and their ≥8/8 HLA-matched URDs comprising two independent cohorts treated from 2000-2011. FINDINGS: Using meta-analyses of both cohorts, genome-wide significant associations (p < 5 × 10-8) were identified in: recipient genomes with OS at MBNL1 (rs9990017, HR = 1.4, 95% CI 1.24-1.56, p = 3.3 × 10-8) and donor-recipient genotype mismatch with OS at LINC02774 (rs10927108, HR = 1.34, 95% CI 1.21-1.48, p = 2.0 × 10-8); donor genomes with DRM at PCNX4 (rs79076914, HR = 1.7, 95% CI 1.41-2.05, p = 3.15 × 10-8), LINC01194 (rs79498125, HR = 1.86, 95% CI 1.49-2.31, p = 2.84 × 10-8), ARID5B (rs2167710, HR = 1.5, 95% CI 1.31-1.73, p = 6.9 × 10-9) and CT49 (rs32250, HR = 1.44, 95% CI1.26-1.64, p = 2.6 × 10-8); recipient genomes at PILRB with TRM (rs141591562, HR = 2.33, 95% CI 1.74-3.12, p = 1.26 × 10-8) and donor-recipient genotype mismatch between EPGN and MTHF2DL with TRM (rs75868097, HR = 2.66, 95% CI 1.92-3.58, p = 4.6 × 10-9). Results publicly available at https://fuma.ctglab.nl/browse. INTERPRETATION: These data provide the first evidence that non-HLA common genetic variation at novel loci with biochemical function significantly impacts 1-year URD-BMT survival. Our findings have implications for donor selection, could guide treatment strategies and provide individualized risk prediction after future validation and functional studies. FUNDING: This project was funded by grants from the National Institutes of Health, USA.
RESUMEN
Multiple candidate gene-association studies of non-HLA single-nucleotide polymorphisms (SNPs) and outcomes after blood or marrow transplant (BMT) have been conducted. We identified 70 publications reporting 45 SNPs in 36 genes significantly associated with disease-related mortality, progression-free survival, transplant-related mortality, and/or overall survival after BMT. Replication and validation of these SNP associations were performed using DISCOVeRY-BMT (Determining the Influence of Susceptibility COnveying Variants Related to one-Year mortality after BMT), a well-powered genome-wide association study consisting of 2 cohorts, totaling 2888 BMT recipients with acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndrome, and their HLA-matched unrelated donors, reported to the Center for International Blood and Marrow Transplant Research. Gene-based tests were used to assess the aggregate effect of SNPs on outcome. None of the previously reported significant SNPs replicated at P < .05 in DISCOVeRY-BMT. Validation analyses showed association with one previously reported donor SNP at P < .05 and survival; more associations would be anticipated by chance alone. No gene-based tests were significant at P < .05. Functional annotation with publicly available data shows these candidate SNPs most likely do not have biochemical function; only 13% of candidate SNPs correlate with gene expression or are predicted to impact transcription factor binding. Of these, half do not impact the candidate gene of interest; the other half correlate with expression of multiple genes. These findings emphasize the peril of pursing candidate approaches and the importance of adequately powered tests of unbiased genome-wide associations with BMT clinical outcomes given the ultimate goal of improving patient outcomes.
Asunto(s)
Trasplante de Médula Ósea/mortalidad , Supervivencia sin Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Trasplante de Células Madre/mortalidad , Estudios de Validación como Asunto , Aloinjertos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/mortalidad , Síndromes Mielodisplásicos/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapiaRESUMEN
The incidence and mortality rates of B-cell acute lymphoblastic leukemia (B-ALL) differ by age and sex. To determine if inherited genetic susceptibility contributes to these differences we performed 2 genome-wide association studies (GWAS) by age, sex, and subtype and subsequent meta-analyses. The GWAS included 446 B-ALL cases, and 3027 healthy unrelated blood and marrow transplant (BMT) donors as controls from the Determining the Influence of Susceptibility Conveying Variants Related to One-Year Mortality after BMT (DISCOVeRY-BMT) study. We identified 1 novel variant, rs189434316, significantly associated with odds of normal cytogenetic B-ALL (odds ratio from meta-analysis [ORmeta] = 3.7; 95% confidence interval [CI], 2.5, 6.2; P value from meta-analysis [Pmeta] = 6.0 × 10-9). The previously reported pediatric B-ALL GWAS variant, rs11980379 (IKZF1), replicated in B-ALL pediatric patients (ORmeta = 2.3; 95% CI, 1.5, 3.7; Pmeta = 1.0 × 10-9), with evidence of heterogeneity (P = .02) between males and females. Sex differences in single-nucleotide polymorphism effect were seen in those >15 years (OR = 1.7; 95% CI, 1.4, 2.2, PMales = 6.38 × 10-6/OR = 1.1; 95% CI, 0.8, 1.5; PFemales = .6) but not ≤15 years (OR = 2.3; 95% CI, 1.4, 3.8; PMales = .0007/OR = 1.9; 95% CI, 1.2, 3.2; PFemales = .007). The latter association replicated in independent pediatric B-ALL cohorts. A previously identified adolescent and young-adult onset ALL-associated variant in GATA3 is associated with B-ALL risk in those >40 years. Our findings provide more evidence of the influence of genetics on B-ALL age of onset and we have shown the first evidence that IKZF1 associations with B-ALL may be sex and age specific.