Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 287(40): 33314-26, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22829595

RESUMEN

The inner membrane of mitochondria is especially protein-rich. To direct proteins into the inner membrane, translocases mediate transport and membrane insertion of precursor proteins. Although the majority of mitochondrial proteins are imported from the cytoplasm, core subunits of respiratory chain complexes are inserted into the inner membrane from the matrix. Oxa1, a conserved membrane protein, mediates the insertion of mitochondrion-encoded precursors into the inner mitochondrial membrane. The molecular mechanism by which Oxa1 mediates insertion of membrane spans, entailing the translocation of hydrophilic domains across the inner membrane, is still unknown. We investigated if Oxa1 could act as a protein-conducting channel for precursor transport. Using a biophysical approach, we show that Oxa1 can form a pore capable of accommodating a translocating protein segment. After purification and reconstitution, Oxa1 acts as a cation-selective channel that specifically responds to mitochondrial export signals. The aqueous pore formed by Oxa1 displays highly dynamic characteristics with a restriction zone diameter between 0.6 and 2 nm, which would suffice for polypeptide translocation across the membrane. Single channel analyses revealed four discrete channels per active unit, suggesting that the Oxa1 complex forms several cooperative hydrophilic pores in the inner membrane. Hence, Oxa1 behaves as a pore-forming translocase that is regulated in a membrane potential and substrate-dependent manner.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Membrana Dobles de Lípidos/química , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Biofisica/métodos , Cationes , Dicroismo Circular , Electrofisiología/métodos , Liposomas/química , Potenciales de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Péptidos/química , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo
2.
Nat Immunol ; 8(8): 864-72, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603488

RESUMEN

The function of the oxidoreductase ERp57 in the major histocompatibility complex (MHC) class I peptide-loading complex has remained elusive. Here we show that in the absence of tapasin, the alpha2 disulfide bond in the MHC class I peptide-binding groove was rapidly reduced. Covalent sequestration of ERp57 by tapasin was needed to protect the alpha2 disulfide bond against reduction and thus to maintain the binding groove in a peptide-receptive state. Allelic variations in MHC class I tapasin dependency reflected their susceptibility to reduction of the alpha2 disulfide bond. In the absence of sequestration, ERp57 acted directly on the alpha2 disulfide bond. Our work provides insight into how the immune system customizes 'quality control' in the endoplasmic reticulum to fit the needs of antigen presentation.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Línea Celular , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/inmunología , Oxidación-Reducción , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/inmunología
3.
EMBO J ; 26(13): 3086-97, 2007 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-17557078

RESUMEN

The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor-ligand signaling interactions can be selectively regulated by an extracellular redox catalyst.


Asunto(s)
Antígeno Ki-1/metabolismo , Transducción de Señal , Tiorredoxinas/metabolismo , Anticuerpos/inmunología , Catálisis , Línea Celular , Membrana Celular/metabolismo , Disulfuros/metabolismo , Epítopos/inmunología , Humanos , Antígeno Ki-1/agonistas , Antígeno Ki-1/clasificación , Antígeno Ki-1/inmunología , Cinética , Ligandos , Linfocitos/metabolismo , Oxidación-Reducción , Unión Proteica , Sensibilidad y Especificidad , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/genética
4.
J Biol Chem ; 280(13): 12996-3003, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15671040

RESUMEN

YidC plays a role in the integration and assembly of many (if not all) Escherichia coli inner membrane proteins. Strikingly, YidC operates in two distinct pathways: one associated with the Sec translocon that also mediates protein translocation across the inner membrane and one independent from the Sec translocon. YidC is homologous to Alb3 and Oxa1 that function in the integration of proteins into the thylakoid membrane of chloroplasts and inner membrane of mitochondria, respectively. Here, we have expressed the conserved region of yeast Oxa1 in a conditional E. coli yidC mutant. We find that Oxa1 restores growth upon depletion of YidC. Data obtained from in vivo protease protection assays and in vitro cross-linking and folding assays suggest that Oxa1 complements the insertion of Sec-independent proteins but is unable to take over the Sec-associated function of YidC. Together, our data indicate that the Sec-independent function of YidC is conserved and essential for cell growth.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/fisiología , Membrana Celular/metabolismo , Proliferación Celular , Cloroplastos/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Complejo IV de Transporte de Electrones/genética , Endopeptidasa K/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Plásmidos/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Tilacoides/metabolismo , Transcripción Genética
5.
J Biol Chem ; 280(13): 13004-11, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15654078

RESUMEN

Members of the Oxa1/YidC family are involved in the biogenesis of membrane proteins. In bacteria, YidC catalyzes the insertion and assembly of proteins of the inner membrane. Mitochondria of animals, fungi, and plants harbor two distant homologues of YidC, Oxa1 and Cox18/Oxa2. Oxa1 plays a pivotal role in the integration of mitochondrial translation products into the inner membrane of mitochondria. It contains a C-terminal ribosome-binding domain that physically interacts with mitochondrial ribosomes to facilitate the co-translational insertion of nascent membrane proteins. The molecular function of Cox18/Oxa2 is not well understood. Employing a functional complementation approach with mitochondria-targeted versions of YidC we show that YidC is able to functionally replace both Oxa1 and Cox18/Oxa2. However, to integrate mitochondrial translation products into the inner membrane of mitochondria, the ribosome-binding domain of Oxa1 has to be appended onto YidC. On the contrary, the fusion of the ribosome-binding domain onto YidC prevents its ability to complement COX18 mutants suggesting an indispensable post-translational activity of Cox18/Oxa2. Our observations suggest that during evolution of mitochondria from their bacterial ancestors the two descendents of YidC functionally segregated to perform two distinct activities, one co-translational and one post-translational.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Evolución Molecular , Eliminación de Gen , Prueba de Complementación Genética , Inmunoprecipitación , Sustancias Macromoleculares , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Proteínas Mitocondriales/química , Modelos Biológicos , Modelos Genéticos , Mutación , Unión Proteica , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas , Ribosomas/química , Fracciones Subcelulares , Factores de Tiempo , beta-Lactamasas/química
6.
Nature ; 426(6968): 862-6, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14685243

RESUMEN

The outer membranes of mitochondria and chloroplasts are distinguished by the presence of beta-barrel membrane proteins. The outer membrane of Gram-negative bacteria also harbours beta-barrel proteins. In mitochondria these proteins fulfil a variety of functions such as transport of small molecules (porin/VDAC), translocation of proteins (Tom40) and regulation of mitochondrial morphology (Mdm10). These proteins are encoded by the nucleus, synthesized in the cytosol, targeted to mitochondria as chaperone-bound species, recognized by the translocase of the outer membrane, and then inserted into the outer membrane where they assemble into functional oligomers. Whereas some knowledge has been accumulated on the pathways of insertion of proteins that span cellular membranes with alpha-helical segments, very little is known about how beta-barrel proteins are integrated into lipid bilayers and assembled into oligomeric structures. Here we describe a protein complex that is essential for the topogenesis of mitochondrial outer membrane beta-barrel proteins (TOB). We present evidence that important elements of the topogenesis of beta-barrel membrane proteins have been conserved during the evolution of mitochondria from endosymbiotic bacterial ancestors.


Asunto(s)
Evolución Molecular , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Neurospora crassa/metabolismo , Dicroismo Circular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neurospora crassa/química , Neurospora crassa/citología , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
J Biol Chem ; 277(15): 12846-53, 2002 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-11823466

RESUMEN

The Oxa1 protein is a ubiquitous constituent of the inner membrane of mitochondria. Oxa1 was identified in yeast as a crucial component of the protein export machinery known as the OXA translocase, which facilitates the integration of proteins from the mitochondrial matrix into the inner membrane. We have identified the Neurospora crassa Oxa1 protein which shows a sequence identity of 22% to the yeast homologue. Despite the low level of identity, the function of the homologues is conserved as the N. crassa gene fully complemented a yeast null mutant. Genetic analysis revealed that Oxa1 is essential for viability in N. crassa. Cells propagated under conditions that severely reduce Oxa1 levels grew extremely slowly and were deficient in subunits of complex I and complex IV. Isolation of the Oxa1 complex from N. crassa mitochondria revealed a 170-180-kDa complex that contained exclusively Oxa1. Since the Oxa1 monomer has a molecular weight of 43,000, our data suggest that the OXA translocase consists of a homooligomer most likely containing four Oxa1 subunits.


Asunto(s)
Biopolímeros/metabolismo , Mitocondrias/enzimología , Neurospora crassa/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Detergentes , Complejo IV de Transporte de Electrones , Prueba de Complementación Genética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Neurospora crassa/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...