Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(4): 231835, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601034

RESUMEN

The southern Mendoza province, located in the northern region of Patagonia, was inhabited by hunter-gatherer groups until historic times. Previous archaeological studies have reported canid remains among faunal assemblages, which were assumed to be part of the human diet. However, the taxonomic identification and significance of these canids within human groups have raised questions. In this study, we used ancient DNA analysis, morphological examination and stable isotope analysis (δ13Ccol and δ15N) to re-evaluate the taxonomic assignment of a canid discovered at the Late Holocene burial site of Cañada Seca. Previous morphological identifications suggested that it belonged to the genus Lycalopex, but our results conclusively demonstrate that the individual belongs to the extinct fox species Dusicyon avus. This finding expands Dusicyon avus' known geographical distribution to Patagonia's northern extremity. Furthermore, statistical predictions based on genetic divergence undermine the hypothesis that hybridization between Canis and Dusicyon, facilitated by the introduction of domestic dogs, played a role in the extinction of Dusicyon species. On the other hand, our findings indicate that a Dusicyon avus individual shared a similar diet and was probably buried alongside humans, suggesting a close relationship between the two species during their lives and deaths.

2.
Sci Rep ; 12(1): 1224, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075186

RESUMEN

Sparassodonts were the apex mammalian predators of South America throughout most of the Cenozoic, diversifying into a wide array of niches including fox-like and even saber-toothed forms. Their extinction is still controversial, with different authors suggesting competition with other predators (placental carnivorans, terror birds, and carnivorous opossums), extinction of prey, and climate change as causal explanations. Here, we analyse these hypotheses using a novel approach implicating Bayesian analyses. We find that speciation and extinction rates of sparassodonts can be correlated with (i) intrinsic biotic factors such as changes in body mass and diversity of sparassodonts, (ii) extrinsic biotic factors such as potential prey diversity, and iii) extrinsic abiotic factors like the atmospheric CO2, sea level, temperature, and uplift of the Andes. Thus, sparassodonts are a good example of a multilevel mixed model of evolution, where various factors drove the evolutionary history of this clade in a pluralistic way. There is no evidence for competition between Sparassodonta and others predators, and the effect of competition in the face of extinctions of fossil species should be tested and not assumed. Furthermore, we propose a novel approach for evaluating the fossil record when performing macroevolutionary analyses.


Asunto(s)
Evolución Biológica , Extinción Biológica , Fósiles , Mamíferos , Modelos Genéticos , Animales , Teorema de Bayes , Tamaño Corporal , Ecosistema , Conducta Predatoria , América del Sur
3.
Sci Rep ; 11(1): 9830, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972595

RESUMEN

The vertebrate fossil record of the Pampean Region of Argentina occupies an important place in South American vertebrate paleontology. An abundance of localities has long been the main basis for constructing the chronostratigraphical/geochronological scale for the late Neogene-Quaternary of South America, as well as for understanding major patterns of vertebrate evolution, including the Great American Biotic Interchange. However, few independently-derived dates are available for constraining this record. In this contribution, we present new 40Ar/39Ar dates on escorias (likely the product of meteoric impacts) from the Argentinean Atlantic coast and statistically-based biochronological analyses that help to calibrate Late Miocene-Pliocene Pampean faunal successions. For the type areas of the Montehermosan and Chapadmalalan Ages/Stages, our results delimit their age ranges to 4.7-3.7 Ma and ca. 3.74-3.04 Ma, respectively. Additionally, from Buenos Aires Province, dates of 5.17 Ma and 4.33 Ma were recovered for "Huayquerian" and Montehermosan faunas. This information helps to better calibrate important first appearances of allochthonous taxa in South America, including one of the oldest records for procyonids (7.24-5.95 Ma), cricetids (6.95-5.46 Ma), and tayassuids (> 3.74 Ma, oldest high-confidence record). These results also constrain to ca. 3 Ma the last appearances of the autochthonous sparassodonts, as well as terror birds of large/middle body size in South America. South American faunal turnover during the late Neogene, including Late Pliocene extinctions, is interpreted as a consequence of knock-on effects from global climatic changes and initiation of the icehouse climate regime.


Asunto(s)
Argón/análisis , Biodiversidad , Evolución Biológica , Radioisótopos/análisis , Vertebrados/fisiología , Animales , Argentina , Fósiles
4.
Biol Lett ; 15(5): 20190148, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31039726

RESUMEN

The Great American Biotic Interchange is considered to be a punctuated process, primarily occurring during four major pulses that began approximately 2.5 Ma. Central America and southeastern Mexico have a poor fossil record of this dynamic faunal history due to tropical climates. Exploration of submerged caves in the Yucatán, particularly the natural trap Hoyo Negro, is exposing a rich and remarkably well-preserved late Pleistocene fauna. Radiometric dates on megafauna range from approximately 38 400-12 850 cal BP, and extinct species include the ursid Arctotherium wingei and canid Protocyon troglodytes. Both genera were previously thought to be indigenous to and confined to South America and appear to represent an instance of large placental mammals, descended from North American progenitors, migrating back north across the Panama Isthmus. This discovery expands the distribution of these carnivorans greater than 2000 km outside South America. Their presence along with a diverse sloth assemblage suggests a more complex history of these organisms in Middle America. We suggest that landscape and ecological changes caused by latest Pleistocene glaciation supported an interchange pulse that included A. wingei, P. troglodytes and Homo sapiens.


Asunto(s)
Fósiles , Ursidae , Animales , Femenino , Humanos , México , Embarazo , América del Sur , Clima Tropical
5.
Sci Adv ; 2(6): e1501682, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27386563

RESUMEN

The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts.


Asunto(s)
Cambio Climático , Extinción Biológica , Animales , Huesos/química , Huesos/metabolismo , Camelidae/clasificación , Camelidae/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Felidae/clasificación , Felidae/genética , Actividades Humanas , Humanos , Cubierta de Hielo , Datación Radiométrica , Análisis de Secuencia de ADN , América del Sur , Ursidae/clasificación , Ursidae/genética
6.
Biol Lett ; 12(4)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27095265

RESUMEN

The Tremarctinae are a subfamily of bears endemic to the New World, including two of the largest terrestrial mammalian carnivores that have ever lived: the giant, short-faced bears Arctodus simus from North America and Arctotherium angustidens from South America (greater than or equal to 1000 kg). Arctotherium angustidens became extinct during the Early Pleistocene, whereas Arctodus simus went extinct at the very end of the Pleistocene. The only living tremarctine is the spectacled bear (Tremarctos ornatus), a largely herbivorous bear that is today only found in South America. The relationships among the spectacled bears (Tremarctos), South American short-faced bears (Arctotherium) and North American short-faced bears (Arctodus) remain uncertain. In this study, we sequenced a mitochondrial genome from an Arctotherium femur preserved in a Chilean cave. Our molecular phylogenetic analyses revealed that the South American short-faced bears were more closely related to the extant South American spectacled bear than to the North American short-faced bears. This result suggests striking convergent evolution of giant forms in the two groups of short-faced bears (Arctodus and Arctotherium), potentially as an adaptation to dominate competition for megafaunal carcasses.


Asunto(s)
Evolución Biológica , ADN Antiguo/análisis , ADN Mitocondrial/genética , Ursidae/genética , Animales , Chile , Fósiles , Genoma Mitocondrial , Filogenia , Ursidae/clasificación
7.
Syst Biol ; 64(2): 294-306, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25516268

RESUMEN

Although the use of landmark data to study shape changes along a phylogenetic tree has become a common practice in evolutionary studies, the role of this sort of data for the inference of phylogenetic relationships remains under debate. Theoretical issues aside, the very existence of historical information in landmark data has been challenged, since phylogenetic analyses have often shown little congruence with alternative sources of evidence. However, most analyses conducted in the past were based upon a single landmark configuration, leaving it unsettled whether the incorporation of multiple configurations may improve the rather poor performance of this data source in most previous phylogenetic analyses. In the present study, we present a phylogenetic analysis of landmark data that combines information derived from several skeletal structures to derive a phylogenetic tree for musteloids. The analysis includes nine configurations representing different skeletal structures for 24 species. The resulting tree presents several notable concordances with phylogenetic hypotheses derived from molecular data. In particular, Mephitidae, Procyonidae, and Lutrinae plus the genera Martes, Mustela, Galictis, and Procyon were retrieved as monophyletic. In addition, other groupings were in agreement with molecular phylogenies or presented only minor discordances. Complementary analyses have also indicated that the results improve substantially when an increasing number of landmark configurations are included in the analysis. The results presented here thus highlight the importance of combining information from multiple structures to derive phylogenetic hypotheses from landmark data.


Asunto(s)
Carnívoros/clasificación , Clasificación/métodos , Filogenia , Animales , Huesos/anatomía & histología , Carnívoros/anatomía & histología , Húmero/anatomía & histología
8.
Zoology (Jena) ; 116(6): 356-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24182890

RESUMEN

We assessed the influence of a variety of aspects of locomotion and ecology including gait and locomotor types, maximal running speed, home range, and body size on postcranial shape variation in small to medium-sized mammals, employing geometric morphometric analysis and phylogenetic comparative methods. The four views analyzed, i.e., dorsal view of the penultimate lumbar vertebra, lateral view of the pelvis, posterior view of the proximal femur and proximal view of the tibia, showed clear phylogenetic signal and interesting patterns of association with movement. Variation in home range size was related to some tibia shape changes, while speed was associated with lumbar vertebra, pelvis and tibia shape changes. Femur shape was not related to any locomotor variables. In both locomotor type and high-speed gait analyses, locomotor groups were distinguished in both pelvis and tibia shape analyses. These results suggest that adaptations to both typical and high-speed gaits could explain a considerable portion of the shape of those elements. In addition, lumbar vertebra and tibia showed non-significant relationships with body mass, which suggests that they might be used in morpho-functional analyses and locomotor inferences on fossil taxa, with little or no bias for body size. Lastly, we observed morpho-functional convergences among several mammalian taxa and detected some taxa that achieve similar locomotor features following different morphological paths.


Asunto(s)
Miembro Posterior/anatomía & histología , Locomoción/fisiología , Vértebras Lumbares/anatomía & histología , Mamíferos/anatomía & histología , Pelvis/anatomía & histología , Animales , Tamaño Corporal , Marcha , Fenómenos de Retorno al Lugar Habitual , Mamíferos/clasificación , Filogenia , Análisis de Regresión , Carrera
9.
Nat Commun ; 4: 1552, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23462995

RESUMEN

The origins of the extinct Falkland Islands wolf (FIW), Dusicyon australis, have remained a mystery since it was first recorded by Europeans in the seventeenth century. It is the only terrestrial mammal on the Falkland Islands (also known as the Malvinas Islands), which lie ~460 km from Argentina, leading to suggestions of either human-mediated transport or overwater dispersal. Previous studies used ancient DNA from museum specimens to suggest that the FIW diverged from its closest living relative, the South American maned wolf (Chrysocyon brachyurus) around 7 Ma, and colonized the islands ~330 ka by unknown means. Here we retrieve ancient DNA from subfossils of an extinct mainland relative, Dusicyon avus, and reveal the FIW lineage became isolated only 16 ka (8-31 ka), during the last glacial phase. Submarine terraces, formed on the Argentine coastal shelf by low sea-stands during this period, suggest that the FIW colonized via a narrow, shallow marine strait, potentially while it was frozen over.


Asunto(s)
Evolución Biológica , Lobos/genética , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Islas Malvinas , Fósiles , Geografía , Humanos , Factores de Tiempo
10.
Mol Phylogenet Evol ; 63(3): 745-57, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22410652

RESUMEN

We analyzed a concatenated (8492 bp) nuclear-mitochondrial DNA data set from 44 musteloids (including the first genetic data for Lyncodon patagonicus) with parsimony, maximum likelihood, and Bayesian methods of phylogenetic and biogeographic inference and two Bayesian methods of chronological inference. Here we show that Musteloidea emerged approximately 32.4-30.9 million years ago (MYA) in Asia, shortly after the greenhouse-icehouse global climate shift at the Eocene-Oligocene transition. During their Oligocene radiation, which proceeded wholly or mostly in Asia, musteloids diversified into four primary divisions: the Mephitidae lineage separated first, succeeded by Ailuridae and the divergence of the Procyonidae and Mustelidae lineages. Mustelidae arose approximately 16.1 MYA within the Mid-Miocene Climatic Optimum, and extensively diversified in the Miocene, mostly in Asia. The early offshoots of this radiation largely evolved into badger and marten ecological niches (Taxidiinae, Melinae, Mellivorinae, Guloninae, and Helictidinae), whereas the later divergences have adapted to other niches including those of weasels, polecats, minks, and otters (Mustelinae, Ictonychinae, and Lutrinae). Notably, and contrary to traditional beliefs, the morphological adaptations of badgers, martens, weasels, polecats, and minks each evolved independently more than once within Mustelidae. Ictonychinae (which is most closely related to Lutrinae) arose approximately 9.5-8.9 MYA, most likely in Asia, where it diverged into the Old World Ictonychini (Vormela, Poecilictis, Ictonyx, and Poecilogale) and New World Lyncodontini (Lyncodon and Galictis) lineages. Ictonychini presumably entered Africa during the Messinian Salinity Crisis (at the Miocene-Pliocene transition), which interposed the origins of this clade (approximately 6.5-6.0 MYA) and its African Poecilictis-Ictonyx-Poecilogale subclade (approximately 4.8-4.5 MYA). Lyncodontini originated approximately 2.9-2.6 MYA at the Pliocene-Pleistocene transition in South America, slightly after the emergence of the Panamanian land bridge that provided for the Great American Biotic Interchange. As the genera Martes and Ictonyx (as currently circumscribed) are paraphyletic with respect to the genera Gulo and Poecilogale, respectively, we propose that Pekaniaand Poecilictis be treated as valid genera and that "Martes"pennanti and "Ictonyx"libyca, respectively, be assigned to these genera.


Asunto(s)
Evolución Molecular , Mustelidae/genética , Filogenia , Animales , Teorema de Bayes , Fósiles , Especiación Genética , Funciones de Verosimilitud , Modelos Genéticos , Tipificación de Secuencias Multilocus , Filogeografía
11.
Cladistics ; 26(5): 456-481, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34875763

RESUMEN

South America currently possesses a high diversity of canids, comprising mainly small to medium-sized omnivorous species, but in the Pleistocene there were large hypercarnivorous taxa that were assigned to Protocyon spp., Theriodictis spp., Canis gezi, Canis nehringi and Canis dirus. These fossils have never been included in phylogenies based on quantitative cladistics, but hand-constructed cladograms published in the 1980s included some of them in the South American canine clade and others in the Canis clade. In this work, the phylogenetic position of the large extinct South American canids was studied using a large sample of living and extinct canids, as well as different sources of characters (e.g. DNA and 133 osteological characters). The phylogenetic analysis corroborates the inclusion of Theriodictis and Protocyon in the "South American clade", where C. gezi is also included. In addition, the position of C. dirus as a highly derived Canis species is confirmed. The simultaneous analysis supports hypercarnivory having arisen at least three times in Caninae and once in the "South American clade". The combination of the phylogenetic analyses, the fossil record and divergence dates estimated in previous works suggests that at least three or four independent lineages of the "South American clade" invaded South America after the establishment of the Panama bridge around 3 million years ago, plus other events corresponding to the immigration of Urocyon and Canis dirus. © The Willi Hennig Society 2009.

12.
Cladistics ; 26(3): 326-339, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34875786

RESUMEN

Here we explore the effect of missing data in phylogenetic analyses using a large number of real morphological matrices. Different percentages and patterns of missing entries were added to each matrix, and their influence was evaluated by comparing the accuracy and error of most parsimonious trees. The relationships between accuracy and error and different parameters (e.g. the number of taxa and characters, homoplasy, support) were also evaluated. Our findings, based on real matrices, agree with the simulation studies, i.e. the negative effect increases with the percentage of missing entries, and decreases with the addition of more characters. This indicates that the main problem is the lack of information, not just the presence of missing data per se. Accuracy varies with different distribution patterns of missing entries; the worst case is when missing data are concentrated in a few taxa, while the best is when the missing entries are restricted to just a few characters. The results expand our knowledge of the missing data problem, corroborate many of the findings previously published using simulations, and could be useful for empirical or theoretical studies. © The Willi Hennig Society 2009.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA