Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36233095

RESUMEN

The comet assay is a versatile assay for detecting DNA damage in eukaryotic cells. The assay can measure the levels of various types of damage, including DNA strand breaks, abasic sites and alkali-sensitive sites. Furthermore, the assay can also be modified to include purified DNA glycosylases so that alkylated and oxidized bases can be detected. The CometChip is a higher throughput version of the traditional comet assay and has been used to study cultured cells. Here, we have tested its utility for studies of DNA damage present in vivo. We show that the CometChip is effective in detecting DNA damage in multiple tissues of mice exposed to the direct-acting methylating agent methylmethane sulfonate (MMS) and to the metabolically activated methylating agent N-nitrosodimethylamine (NDMA), which has been found to contaminate food, water, and drugs. Specifically, results from MMS-exposed mice demonstrate that DNA damage can be detected in cells from liver, lung, kidney, pancreas, brain and spleen. Results with NDMA show that DNA damage is detectable in metabolically competent tissues (liver, lung, and kidney), and that DNA repair in vivo can be monitored over time. Additionally, it was found that DNA damage persists for many days after exposure. Furthermore, glycosylases were successfully incorporated into the assay to reveal the presence of damaged bases. Overall, this work demonstrates the efficacy of the in vivo CometChip and reveals new insights into the formation and repair of DNA damage caused by MMS and NDMA.


Asunto(s)
ADN Glicosilasas , Dimetilnitrosamina , Álcalis , Animales , Ensayo Cometa/métodos , ADN , Daño del ADN , Reparación del ADN , Metilmetanosulfonato , Ratones
2.
J Vis Exp ; (84): e51581, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24562185

RESUMEN

Reliable tools for investigating ovarian cancer initiation and progression are urgently needed. While the use of ovarian cancer cell lines remains a valuable tool for understanding ovarian cancer, their use has many limitations. These include the lack of heterogeneity and the plethora of genetic alterations associated with extended in vitro passaging. Here we describe a method that allows for rapid establishment of primary ovarian cancer cells form solid clinical specimens collected at the time of surgery. The method consists of subjecting clinical specimens to enzymatic digestion for 30 min. The isolated cell suspension is allowed to grow and can be used for downstream application including drug screening. The advantage of primary ovarian cancer cell lines over established ovarian cancer cell lines is that they are representative of the original specific clinical specimens they are derived from and can be derived from different sites whether primary or metastatic ovarian cancer.


Asunto(s)
Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Técnicas Citológicas/métodos , Femenino , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...