Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38973337

RESUMEN

Myocardial reperfusion injury (MRI) accounts for up to 50% of the final size in acute myocardial infarction and other conditions associated with ischemia-reperfusion. Currently, there is still no therapy to prevent MRI, but it is well known that oxidative stress has a key role in its mechanism. We previously reduced MRI in rats through a combined antioxidant therapy (CAT) of ascorbic acid, N-acetylcysteine, and deferoxamine. This study determines the safety and pharmacokinetics of CAT in a Phase I clinical trial. Healthy subjects (n = 18) were randomized 2:1 to CAT or placebo (NaCl 0.9% i.v.). Two different doses/infusion rates of CATs were tested in a single 90-minute intravenous infusion. Blood samples were collected at specific times for 180 minutes to measure plasma drug concentrations (ascorbic acid, N-acetylcysteine, and deferoxamine) and oxidative stress biomarkers. Adverse events were registered during infusion and followed for 30 days. Both CAT1 and CAT2 significantly increased the CAT drug concentrations compared to placebo (P < .05). Most of the pharmacokinetic parameters were similar between CAT1 and CAT2. In total, 6 adverse events were reported, all nonserious and observed in CAT1. The ferric-reducing ability of plasma (an antioxidant biomarker) increased in both CAT groups compared to placebo (P < .001). The CAT is safe in humans and a potential treatment for patients with acute myocardial infarction undergoing reperfusion therapy.

2.
World Neurosurg ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38763459

RESUMEN

INTRODUCTION: Horseback riding can cause severe brain and spinal injuries. This study aimed to identify the spectrum of neurosurgical injuries related to recreational horseback riding. METHODS: A retrospective study was performed utilizing the University of Puerto Rico neurosurgery database to identify patients who were consulted to the neurosurgery service between 2018 and 2023 after a horse fall during recreational activities. The outcome upon discharge using the modified Rankin scale (mRS) was documented. Descriptive statistics were used to report frequency and median values. RESULTS: The neurosurgery service evaluated and managed 112 patients with a horseback riding fall-related injury during 6 years. Ninety-eight (87.5%) patients were male. The patients' median age was 31.5 (IQR 22-40). There were 89 head injuries (79.5%), 19 spinal injuries (17%), and 4 combined head/spine injuries (3.5%). Forty percent of the patients were admitted to inpatient care with a median length of stay of 7 days (IQR 3-17). Twenty-four patients (21%) required surgery. Upon discharge, 86.6% of the patients had an mRS grade of 0-2, 3.6% had a grade of 3, 1.8% had a grade of 4, and 1.8% had a grade of 5. Seven patients (6%) died (mRS grade 6). CONCLUSIONS: Most neurologic injuries involve isolated trauma to the head. Fifteen percent of the riders' falls were caused after the horse was impacted by a motor vehicle. Forty percent of the patients require admission and 21% undergo surgery. Ten percent of the patients had a poor mRS grade of 4- to 6 when discharged.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38736903

RESUMEN

ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI's explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.

4.
Toxins (Basel) ; 16(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668614

RESUMEN

Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Ciguatoxinas/análisis , España , Animales , Cromatografía Liquida , Espectrometría de Masas
5.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492223

RESUMEN

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , beta-Glucanos , Animales , Neutrófilos , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Axones/fisiología , Mamíferos
7.
Proc Natl Acad Sci U S A ; 121(8): e2306132121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346188

RESUMEN

Temporomandibular joint osteoarthritis (TMJ OA) is a prevalent degenerative disease characterized by chronic pain and impaired jaw function. The complexity of TMJ OA has hindered the development of prognostic tools, posing a significant challenge in timely, patient-specific management. Addressing this gap, our research employs a comprehensive, multidimensional approach to advance TMJ OA prognostication. We conducted a prospective study with 106 subjects, 74 of whom were followed up after 2 to 3 y of conservative treatment. Central to our methodology is the development of an innovative, open-source predictive modeling framework, the Ensemble via Hierarchical Predictions through Nested cross-validation tool (EHPN). This framework synergistically integrates 18 feature selection, statistical, and machine learning methods to yield an accuracy of 0.87, with an area under the ROC curve of 0.72 and an F1 score of 0.82. Our study, beyond technical advancements, emphasizes the global impact of TMJ OA, recognizing its unique demographic occurrence. We highlight key factors influencing TMJ OA progression. Using SHAP analysis, we identified personalized prognostic predictors: lower values of headache, lower back pain, restless sleep, condyle high gray level-GL-run emphasis, articular fossa GL nonuniformity, and long-run low GL emphasis; and higher values of superior joint space, mouth opening, saliva Vascular-endothelium-growth-factor, Matrix-metalloproteinase-7, serum Epithelial-neutrophil-activating-peptide, and age indicate recovery likelihood. Our multidimensional and multimodal EHPN tool enhances clinicians' decision-making, offering a transformative translational infrastructure. The EHPN model stands as a significant contribution to precision medicine, offering a paradigm shift in the management of temporomandibular disorders and potentially influencing broader applications in personalized healthcare.


Asunto(s)
Osteoartritis , Trastornos de la Articulación Temporomandibular , Humanos , Estudios Prospectivos , Articulación Temporomandibular , Osteoartritis/terapia , Trastornos de la Articulación Temporomandibular/terapia , Proyectos de Investigación
8.
Front Microbiol ; 15: 1343029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384262

RESUMEN

Bacterial P450 cytochromes (BacCYPs) are versatile heme-containing proteins responsible for oxidation reactions on a wide range of substrates, contributing to the production of valuable natural products with limitless biotechnological potential. While the sequencing of microbial genomes has provided a wealth of BacCYP sequences, functional characterization lags behind, hindering our understanding of their roles. This study employs a comprehensive approach to predict BacCYP substrate specificity, bridging the gap between sequence and function. We employed an integrated approach combining sequence and functional data analysis, genomic context exploration, 3D structural modeling with molecular docking, and phylogenetic clustering. The research begins with an in-depth analysis of BacCYP sequence diversity and structural characteristics, revealing conserved motifs and recurrent residues in the active site. Phylogenetic analysis identifies distinct groups within the BacCYP family based on sequence similarity. However, our study reveals that sequence alone does not consistently predict substrate specificity, necessitating additional perspectives. The study delves into the genetic context of BacCYPs, utilizing neighboring gene information to infer potential substrates, a method proven very effective in many cases. Molecular docking is employed to assess BacCYP-substrate interactions, confirming potential substrates and providing insights into selectivity. Finally, a comprehensive strategy is proposed for predicting BacCYP substrates, involving all the evaluated approaches. The effectiveness of this strategy is demonstrated with two case studies, highlighting its potential for substrate discovery.

9.
J Chem Inf Model ; 64(5): 1581-1592, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38373276

RESUMEN

Metalloproteins play a fundamental role in molecular biology, contributing to various biological processes. However, the discovery of high-affinity ligands targeting metalloproteins has been delayed due, in part, to a lack of suitable tools and data. Molecular docking, a widely used technique for virtual screening of small-molecule ligand interactions with proteins, often faces challenges when applied to metalloproteins due to the particular nature of the ligand metal bond. To address these limitations associated with docking metalloproteins, we introduce a knowledge-driven docking approach known as "metalloprotein bias docking" (MBD), which extends the AutoDock Bias technique. We assembled a comprehensive data set of metalloprotein-ligand complexes from 15 different metalloprotein families, encompassing Ca, Co, Fe, Mg, Mn, and Zn metal ions. Subsequently, we conducted a performance analysis of our MBD method and compared it to the conventional docking (CD) program AutoDock4, applied to various metalloprotein targets within our data set. Our results demonstrate that MBD outperforms CD, significantly enhancing accuracy, selectivity, and precision in ligand pose prediction. Additionally, we observed a positive correlation between our predicted ligand free energies and the corresponding experimental values. These findings underscore the potential of MBD as a valuable tool for the effective exploration of metalloprotein-ligand interactions.


Asunto(s)
Metaloproteínas , Humanos , Metaloproteínas/química , Simulación del Acoplamiento Molecular , Ligandos
10.
Int J Gynaecol Obstet ; 165(3): 1013-1021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38189177

RESUMEN

OBJECTIVE: Low-cost devices have made obstetric sonography possible in settings where it was previously unfeasible, but ensuring quality and consistency at scale remains a challenge. In the present study, we sought to create a tool to reduce substandard fetal biometry measurement while minimizing care disruption. METHODS: We developed a deep learning artificial intelligence (AI) model to estimate gestational age (GA) in the second and third trimester from fly-to cineloops-brief videos acquired during routine ultrasound biometry-and evaluated its performance in comparison to expert sonographer measurement. We then introduced random error into fetal biometry measurements and analyzed the ability of the AI model to flag grossly inaccurate measurements such as those that might be obtained by a novice. RESULTS: The mean absolute error (MAE) of our model (±standard error) was 3.87 ± 0.07 days, compared to 4.80 ± 0.10 days for expert biometry (difference -0.92 days; 95% CI: -1.10 to -0.76). Based on simulated novice biometry with average absolute error of 7.5%, our model reliably detected cases where novice biometry differed from expert biometry by 10 days or more, with an area under the receiver operating characteristics curve of 0.93 (95% CI: 0.92, 0.95), sensitivity of 81.0% (95% CI: 77.9, 83.8), and specificity of 89.9% (95% CI: 88.1, 91.5). These results held across a range of sensitivity analyses, including where the model was provided suboptimal truncated fly-to cineloops. CONCLUSIONS: Our AI model estimated GA more accurately than expert biometry. Because fly-to cineloop videos can be obtained without any change to sonographer workflow, the model represents a no-cost guardrail that could be incorporated into both low-cost and commercial ultrasound devices to prevent reporting of most gross GA estimation errors.


Asunto(s)
Aprendizaje Profundo , Edad Gestacional , Ultrasonografía Prenatal , Humanos , Ultrasonografía Prenatal/normas , Ultrasonografía Prenatal/métodos , Embarazo , Femenino , Control de Calidad , Grabación en Video , Biometría/métodos , Tercer Trimestre del Embarazo , Segundo Trimestre del Embarazo
11.
Orthod Craniofac Res ; 27(2): 321-331, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009409

RESUMEN

OBJECTIVE(S): This study aims to evaluate the influence of the piezocision surgery in the orthodontic biomechanics, as well as in the magnitude and direction of tooth movement in the mandibular arch using novel artificial intelligence (AI)-automated tools. MATERIALS AND METHODS: Nineteen patients, who had piezocision performed in the lower arch at the beginning of treatment with the goal of accelerating tooth movement, were compared to 19 patients who did not receive piezocision. Cone beam computed tomography (CBCT) and intraoral scans (IOS) were acquired before and after orthodontic treatment. AI-automated dental tools were used to segment and locate landmarks in dental crowns from IOS and root canals from CBCT scans to quantify 3D tooth movement. Differences in mesial-distal, buccolingual, intrusion and extrusion linear movements, as well as tooth long axis angulation and rotation were compared. RESULTS: The treatment time for the control and experimental groups were 13.2 ± 5.06 and 13 ± 5.52 months respectively (P = .176). Overall, anterior and posterior tooth movement presented similar 3D linear and angular changes in the groups. The piezocision group demonstrated greater (P = .01) mesial long axis angulation of lower right first premolar (4.4 ± 6°) compared with control group (0.02 ± 4.9°), while the mesial rotation was significantly smaller (P = .008) in the experimental group (0.5 ± 7.8°) than in the control (8.5 ± 9.8°) considering the same tooth. CONCLUSION: The open source-automated dental tools facilitated the clinicians' assessment of piezocision treatment outcomes. The piezocision surgery prior to the orthodontic treatment did not decrease the treatment time and did not influence in the orthodontic biomechanics, leading to similar tooth movements compared to conventional treatment.


Asunto(s)
Inteligencia Artificial , Técnicas de Movimiento Dental , Humanos , Resultado del Tratamiento , Diente Premolar , Técnicas de Movimiento Dental/métodos , Tomografía Computarizada de Haz Cónico
12.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106052

RESUMEN

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.

13.
G Ital Nefrol ; 40(5)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38010247

RESUMEN

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a low-prevalence pathology mainly associated with pathogenic variants of the UMOD gene. It is characterized by the progressive deterioration of renal function, associated with hyperuricemia and accompanied by a family history of gout or hyperuricemia. Often, clinical variability and a lack of molecular testing results in diagnostic failure to determine the ADTKD-UMOD association. Case presentation: We describe the case of a 14-year-old male who presented to the nephrology service with hyperuricemia, renal ultrasonographic changes, and progression to chronic kidney disease in 4 years. He had a family history of hyperuricemia. A probable genetic disease with an autosomal dominant inheritance pattern was considered, confirmed by the presence of a probably pathogenic variant of the UMOD gene, not previously reported in the literature. Conclusion: The investigation of this case led to the identification of a new variant in the UMOD gene, broadening the spectrum of known variants for ADTKD-UMOD. In addition, in this case, a comprehensive anamnesis, that takes into account family history, was the key point to carry out genetic tests that confirmed the diagnosis suspicion. Directed Genetic tests are currently an essential diagnostic tool and should be performed as long as they are available and there is an indication to perform them.


Asunto(s)
Gota , Hiperuricemia , Enfermedades Renales Poliquísticas , Masculino , Humanos , Adolescente , Uromodulina , Gota/genética , Pruebas Genéticas/métodos , Enfermedades Renales Poliquísticas/genética , Mutación
14.
Nat Commun ; 14(1): 7364, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963879

RESUMEN

Epilepsy is a neurological disorder that poses a major threat to public health. Hyperactivation of mTOR complex 1 (mTORC1) is believed to lead to abnormal network rhythmicity associated with epilepsy, and its inhibition is proposed to provide some therapeutic benefit. However, mTOR complex 2 (mTORC2) is also activated in the epileptic brain, and little is known about its role in seizures. Here we discover that genetic deletion of mTORC2 from forebrain neurons is protective against kainic acid-induced behavioral and EEG seizures. Furthermore, inhibition of mTORC2 with a specific antisense oligonucleotide robustly suppresses seizures in several pharmacological and genetic mouse models of epilepsy. Finally, we identify a target of mTORC2, Nav1.2, which has been implicated in epilepsy and neuronal excitability. Our findings, which are generalizable to several models of human seizures, raise the possibility that inhibition of mTORC2 may serve as a broader therapeutic strategy against epilepsy.


Asunto(s)
Epilepsia , Serina-Treonina Quinasas TOR , Ratones , Humanos , Animales , Serina-Treonina Quinasas TOR/genética , Epilepsia/genética , Epilepsia/tratamiento farmacológico , Convulsiones/genética , Convulsiones/inducido químicamente , Diana Mecanicista del Complejo 2 de la Rapamicina , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
15.
Heliyon ; 9(11): e21313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37942154

RESUMEN

This paper reports the preparation and herbicidal evaluation of a small library of acylhydrazones based on the synthetic herbicide metribuzin. The hydrazone linkage easily obtained by reaction of metribuzin with aliphatic and aromatic aldehydes, masks efficiently the exocyclic amino group, thereby altering significantly H-bonding with the receptor and increasing the lipophilicity relative to the parent herbicide. The structures of all compounds, including key stereochemical issues on conformation and E/Z configuration around the C[bond, double bond]N bond were thoroughly elucidated by spectroscopic methods, and unambiguously corroborated by X-ray diffraction analysis. The herbicidal assays using an aliphatic and an aromatic acylhydrazone were performed on tomato and rapeseed plants grown in greenhouse. Our results demonstrate, regardless of rate application, that such acylhydrazone formulations do not alter the selectivity of metribuzin. Moreover, the herbicide activity was even higher in the alkyl derivative than that achieved by commercial metribuzin, thus suggesting that this substance can be applied with no need of combination with chemical coadjuvants, unlike most formulations of commercially available herbicides. Therefore, the study shows the promising effect of chemical derivatization of a common herbicide as metribuzin, to improve the herbicide activity without compromising selectivity, and allowing the farmers its use in crop protection safely and effectively.

16.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014285

RESUMEN

Starvation and low carbohydrate diets lead to the accumulation of the ketone body, ß-hydroxybutyrate (BHB), whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a carbon source, BHB accumulation triggers lysine ß-hydroxybutyrylation (Kbhb) of proteins via unknown mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases (HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with ß-hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino acids for classical deacetylation and non-canonical HDAC-catalyzed ß-hydroxybutyrylation. Also consistent with reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive proteome modifications.

17.
Cureus ; 15(10): e47905, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38034149

RESUMEN

Diffuse leptomeningeal glioneuronal tumor (DLGNT) is a rare primary central nervous system tumor. We present the case of a five-year-old male patient with a rapid progression of a thoracic DLGNT. Initial presentation and workup confirmed acute communicating hydrocephalus requiring a ventriculoperitoneal shunt. Cerebrospinal fluid analysis showed hyperproteinorrachia. Additional workup demonstrated an intramedullary mass at the conus medullaris associated with leptomeningeal enhancement. A T10-T12 laminoplasty with tumor resection was performed. Immunohistochemistry was positive for glial fibrillary acid protein and synaptophysin, with a negative epithelial membrane antigen. The tumor had a Ki67 proliferation index of 9%. Gene tumor analysis revealed the presence of the KIAA1549-BRAF gene fusion. The tumor expressed MSH6, MLH1, MSH2, and PMS2 mismatch repair gene mutations. Multiple subsequent shunt revisions were performed due to malfunction secondary to the hyperproteinorrachia. Follow-up studies showed extensive brain and spinal nodular cystic lesions associated with extensive leptomeningeal spread of disease. The patient received chemotherapy but died due to disease progression. This case report described a rapidly progressive and aggressive DLGNT in a pediatric patient presenting mismatch repair gene mutations. Due to hyperproteinorrachia, shunt revisions are frequently needed in these patients. Even though DLGNT pathology can depict a low-grade tissue, some tumors behave aggressively with minimal significant response to medical and surgical treatments. Mutations of mismatch repair genes MSH6, MLH1, MSH2, and PMS2 may be associated with more aggressive tumors.

18.
Dev Cogn Neurosci ; 64: 101314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898019

RESUMEN

There is strong evidence that the functional connectome is highly related to the white matter connectome in older children and adults, though little is known about structure-function relationships in early childhood. We investigated the development of cortical structure-function coupling in children longitudinally scanned at 1, 2, 4, and 6 years of age (N = 360) and in a comparison sample of adults (N = 89). We also applied a novel graph convolutional neural network-based deep learning model with a new loss function to better capture inter-subject heterogeneity and predict an individual's functional connectivity from the corresponding structural connectivity. We found regional patterns of structure-function coupling in early childhood that were consistent with adult patterns. In addition, our deep learning model improved the prediction of individual functional connectivity from its structural counterpart compared to existing models.


Asunto(s)
Conectoma , Sustancia Blanca , Adulto , Niño , Humanos , Preescolar , Encéfalo , Imagen por Resonancia Magnética , Red Nerviosa
19.
Nat Commun ; 14(1): 6797, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884508

RESUMEN

Axon initial segment (AIS) cell surface proteins mediate key biological processes in neurons including action potential initiation and axo-axonic synapse formation. However, few AIS cell surface proteins have been identified. Here, we use antibody-directed proximity biotinylation to define the cell surface proteins in close proximity to the AIS cell adhesion molecule Neurofascin. To determine the distributions of the identified proteins, we use CRISPR-mediated genome editing for insertion of epitope tags in the endogenous proteins. We identify Contactin-1 (Cntn1) as an AIS cell surface protein. Cntn1 is enriched at the AIS through interactions with Neurofascin and NrCAM. We further show that Cntn1 contributes to assembly of the AIS extracellular matrix, and regulates AIS axo-axonic innervation by inhibitory basket cells in the cerebellum and inhibitory chandelier cells in the cortex.


Asunto(s)
Segmento Inicial del Axón , Fenómenos Biológicos , Segmento Inicial del Axón/metabolismo , Contactina 1/metabolismo , Biotinilación , Sinapsis/metabolismo , Axones/metabolismo , Proteínas de la Membrana/metabolismo , Anticuerpos/metabolismo
20.
Nat Neurosci ; 26(10): 1685-1700, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723322

RESUMEN

Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.


Asunto(s)
Complejo 3 de Proteína Adaptadora , Adenosina Trifosfatasas , Fosfolípidos , Transmisión Sináptica , Vesículas Sinápticas , Animales , Ratones , Fosfolípidos/metabolismo , Sinapsis/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Adenosina Trifosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...