Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171865, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518824

RESUMEN

Atmospheric nitrogen (N) deposition in Mediterranean sclerophyllous forests of Holm oak (Quercus rotundifolia, Q. ilex) in Spain often exceeds empirical critical loads established for ecosystem conservation. There are still uncertainties on the capacity of canopy retention and uptake of the atmospheric N deposited of these forests. Studying and analysing all the forest nitrogen-cycle processes is essential to understand the potential effect of N deposition in these ecosystems. This study conducted a year-long short-term fertilisation experiment with labelled ammonium (15N-NH4) and nitrate (15N-NO3) to estimate foliar N absorption rates and assess the influence of leaf phenology and meteorological seasonal variations. Fertilising solutions were prepared to simulate low and high wet N deposition concentration, based on data reported from previous studies. Additionally, ecophysiological and meteorological measurements were collected to explore potential relationships between absorption rates, plant activity, and weather conditions. The results showed that Holm oak leaves were able to absorb both oxidised and reduced N compounds, with higher rates of NH4+ absorption. N recovery of both NH4+ and NO3- was higher in the low concentration treatments, suggesting reduced effectiveness of absorption as concentration increases. Foliar absorption rates were leaf-age dependent, with the highest values observed in young developing leaves. Foliar uptake showed seasonal changes with a clear reduction during the summer, linked to drought and dry weather conditions, and showing also smaller leaf net assimilation and stomatal conductance. During the rest of the year, foliar N absorption was not clearly associated to plant physiological activity but with environmental conditions. Our findings suggest that Holm oak canopies could absorb an important part of the incoming N deposition, but this process is compound, season and leaf phenology dependent. Further research is therefore needed to better understand and model this part of the N cycle.


Asunto(s)
Ecosistema , Quercus , Nitrógeno/análisis , Bosques , España , Plantas , Hojas de la Planta/química , Fertilización , Quercus/fisiología , Árboles
2.
Ann Bot ; 132(3): 541-552, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37647862

RESUMEN

BACKGROUND AND AIMS: Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. METHODS: We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). KEY RESULTS: Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). CONCLUSIONS: Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.


Asunto(s)
Lupinus , Lupinus/genética , Fenotipo , Semillas , Hojas de la Planta , Reproducción
3.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986946

RESUMEN

Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.

4.
Plants (Basel) ; 12(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771748

RESUMEN

Climate warming is recognized as a factor that threatens plant species in Mediterranean mountains. Tropospheric ozone (O3) should also be considered as another relevant stress factor for these ecosystems since current levels chronically exceed thresholds for plant protection in these areas. The main aim of the present study was to study the sensitivity of four Mediterranean perennial grasses to O3 and temperature based on plant growth, gas exchange parameters (photosynthesis-A, stomatal conductance-gs, and water use efficiency-WUE), and foliar macro- (N, K, Ca, Mg, P, and S) and micronutrients (B, Cu, Fe, Mn, Mo, and Zn) content. The selected species were grasses inhabiting different Mediterranean habitats from mountain-top to semi-arid grasslands. Plants were exposed to four O3 treatments in Open-Top chambers, ranging from preindustrial to above ambient levels, representing predicted future levels. Chamber-less plots were considered to study the effect of temperature increase. Despite the general tolerance of the grasses to O3 and temperature in terms of biomass growth, WUE and foliar nutrient composition were the most affected parameters. The grass species studied showed some degree of similarity in their response to temperature, more related with phylogeny than to their tolerance to drought. In some species, O3 or temperature stress resulted in low A or WUE, which can potentially hinder plant tolerance to climate change. The relationship between O3 and temperature effects on foliar nutrient composition and plant responses in terms of vegetative growth, A, gs, and WUE constitute a complex web of interactions that merits further study. In conclusion, both O3 and temperature might be modifying the adaptation capacity of Mediterranean perennial grass species to the global change. Air pollution should be considered among the driving favors of biodiversity changes in Mediterranean grassland habitats.

5.
Evol Appl ; 16(1): 62-73, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36699122

RESUMEN

In the present framework of global warming, it is unclear whether evolutionary adaptation can happen quick enough to preserve the persistence of many species. Specifically, we lack knowledge about the adaptive potential of the different populations in relation to the various constraints that may hamper particular adaptations. There is evidence indicating that early flowering often provides an adaptive advantage to plants in temperate zones in response to global warming. Thus, the objective of this study was to assess the adaptive potential for advancing flowering onset in Lupinus angustifolius L. (Fabaceae). Seeds from four populations from two contrasting latitudes in Spain were collected and sown in a common garden environment. Selecting the 25% of the individuals that flowered earlier in the first generation, over three generations, three different early flowering selection lines were established, involving both self-crosses and outcrosses. All artificial selection lines advanced their flowering significantly with respect to the control line in the northernmost populations, but not in the southern ones. Selection lines obtained from outcrossing had a greater advancement in flowering than those from self-crossing. No differences were found in the number or weight of the seeds produced between control and artificial selection lines, probably because plants in the common garden were drip irrigated. These results suggest that northern populations may have a greater adaptive potential and that southern populations may be more vulnerable in the context of climate warming. However, earlier flowering was also associated with changes in other traits (height, biomass, shoot growth, specific leaflet area, and leaflet dry matter content), and the effects of these changes varied greatly depending on the latitude of the population and selection line. Assessments of the ability of populations to cope with climate change through this and other approaches are essential to manage species and populations in a more efficient way.

6.
Plants (Basel) ; 10(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34961222

RESUMEN

Ozone (O3) effects on the visual attraction traits (color, perception and area) of petals are described for Erodium paularense, an endangered plant species. Plants were exposed to three O3 treatments: charcoal-filtered air (CFA), ambient (NFA) and ambient + 40 nL L-1 O3 (FU+) in open-top chambers. Changes in color were measured by spectral reflectance, from which the anthocyanin reflectance index (ARI) was calculated. Petal spectral reflectance was mapped onto color spaces of bees, flies and butterflies for studying color changes as perceived by different pollinator guilds. Ozone-induced increases in petal reflectance and a rise in ARI under NFA were observed. Ambient O3 levels also induced a partial change in the color perception of flies, with the number of petals seen as blue increasing to 53% compared to only 24% in CFA. Butterflies also showed the ability to partially perceive petal color changes, differentiating some CFA petals from NFA and FU+ petals through changes in the excitation of the UV photoreceptor. Importantly, O3 reduced petal area by 19.8 and 25% in NFA and FU+ relative to CFA, respectively. In sensitive species O3 may affect visual attraction traits important for pollination, and spectral reflectance is proposed as a novel method for studying O3 effects on flower color.

7.
Plants (Basel) ; 10(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34371561

RESUMEN

Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance and scent chemistry. Multivariate phylogenetic statistics revealed no influence of phylogeny on floral color and scent bouquet. However, univariate phylogenetic statistics revealed a phylogenetic signal in some of the constituents of the scent bouquet. Our results suggest unequal evolutionary pathways of visual and olfactory floral cues in the genus Campanula. While the lack of phylogenetic signal on both color and scent bouquet points to external agents (e.g., pollinators, herbivores) as evolutionary drivers, the presence of phylogenetic signal in at least some floral scent constituents point to an influence of phylogeny on trait evolution. We discuss why external agents and phylogeny differently shape the evolutionary paths in floral color and scent of closely related angiosperms.

8.
Ann Bot ; 118(5): 907-918, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27451986

RESUMEN

Background and Aims Traits related to flower advertisement and reward sometimes vary in a circadian way, reflecting phenotypic specialization. However, specialized flowers are not necessarily restricted to specialized pollinators. This is the case of most Silene species, typically associated with diurnal or nocturnal syndromes of pollination but usually showing complex suites of pollinators. Methods A Silene species with mixed floral features between diurnal and nocturnal syndromes was used to test how petal opening, nectar production, scent emission and pollination success correlate in a circadian rhythm, and whether this is influenced by environmental conditions. The effect of diurnal and nocturnal visitation rates on plant reproductive success is also explored in three populations, including the effect of the pollinating seed predator Hadena sancta. Key Results The result showed that repeated petal opening at dusk was correlated with nectar secretion and higher scent production during the night. However, depending on environmental conditions, petals remain opened for a while in the morning, when nectar and pollen still were available. Pollen deposition was similarly effective at night and in the morning, but less effective in the afternoon. These results were consistent with field studies. Conclusions The circadian rhythm regulating floral attractiveness and reward in S. colorata is predominantly adapted to nocturnal flower visitors. However, favourable environmental conditions lengthen the optimal daily period of flower attraction and pollination towards morning. This allows the complementarity of day and night pollination. Diurnal pollination may help to compensate the plant reproductive success when nocturnal pollinators are scarce and when the net outcome of H. sancta shifts from mutualism to parasitism. These results suggest a functional mechanism explaining why the supposed nocturnal syndrome of many Silene species does not successfully predict their pollinator guilds.

9.
J Chem Ecol ; 41(12): 1095-104, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26538282

RESUMEN

The composition of flower scent and the timing of emission are crucial for chemical communication between plants and their pollinators; hence, they are key traits for the characterization of pollination syndromes. In many plants, however, plants are assigned to a syndrome based on inexpensive to measure flower traits, such as color, time of flower opening, and shape. We compared day and night scents from 31 Sileneae species and tested for quantitative and semi-quantitative differences in scent among species classified a priori as diurnal or nocturnal. As most Sileneae species are not only visited by either diurnal or nocturnal animals as predicted by their syndrome, we hypothesized that, even if flower scent were preferentially emitted during the day or at night, most species also would emit some scents during the opposing periods of the day. This phenomenon would contribute to the generalized assemblage of flower visitors usually observed in Sileneae species. We found that diel variations of scent often were not congruent with the syndrome definition, but could partially be explained by taxonomy and sampling times. Most species emitted compounds with attractive potential to insects during both the night and day. Our results highlight the current opinion that syndromes are not watertight compartments evolved to exclude some flower visitors. Thus, important information may be lost when scents are collected either during day- or night-time, depending on the a priori classification of the species as diurnal or nocturnal.


Asunto(s)
Caryophyllaceae/fisiología , Ritmo Circadiano , Odorantes/análisis , Polinización , Animales , Caryophyllaceae/anatomía & histología , Quimiotaxis , Flores/anatomía & histología , Flores/fisiología , Insectos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...