Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35161338

RESUMEN

Pollen grains of flowering plants display a fascinating diversity of forms. The observed diversity is determined by the developmental mechanisms involved in the establishment of pollen morphological features. Pollen grains are generally surrounded by an extremely resistant wall displaying apertures that play a key role in reproduction, being the places at which pollen tube growth is initiated. Aperture number, structure, and position (collectively termed 'aperture pattern') are determined during microsporogenesis, which is the earliest step of pollen ontogeny. Here, we review current knowledge about aperture pattern developmental mechanisms and adaptive significance with respect to plant reproduction and how advances in these fields shed light on our understanding of aperture pattern evolution in angiosperms.

2.
Am J Bot ; 107(10): 1433-1448, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33026116

RESUMEN

PREMISE: Significant paleobotanical discoveries in recent decades have considerably improved our understanding of the early evolution of angiosperms and their flowers. However, our ability to test the systematic placement of fossil flowers on the basis of phylogenetic analyses has remained limited, mainly due to the lack of an adequate, angiosperm-wide morphological data set for extant taxa. Earlier attempts to place fossil flowers phylogenetically were, therefore, forced to make prior qualitative assessments of the potential systematic position of fossils and to restrict phylogenetic analyses to selected angiosperm subgroups. METHODS: We conduct angiosperm-wide molecular backbone analyses of 10 fossil flower taxa selected from the Cretaceous record. Our analyses make use of a floral trait data set built within the framework of the eFLOWER initiative. We provide an updated version of this data set containing data for 28 floral and two pollen traits for 792 extant species representing 372 angiosperm families. RESULTS: We find that some fossils are placed congruently with earlier hypotheses while others are found in positions that had not been suggested previously. A few take up equivocal positions, including the stem branches of large clades. CONCLUSIONS: Our study provides an objective approach to test for the phylogenetic position of fossil flowers across angiosperms. Such analyses may provide a complementary tool for paleobotanical studies, allowing for a more comprehensive understanding of fossil phylogenetic relationships in angiosperms. Ongoing work focused on extending the sampling of extant taxa and the number of floral traits will further improve the applicability and accuracy of our approach.


Asunto(s)
Fósiles , Magnoliopsida , Evolución Biológica , Flores , Magnoliopsida/genética , Filogenia , Polen
3.
Am J Bot ; 104(12): 1837-1845, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29217673

RESUMEN

PREMISE OF THE STUDY: Apertures in pollen grains are key structures of the wall, involved in pollen tube germination and exchanges with the environment. Aperture types in angiosperms are diverse, but pollen with one and three apertures (including monosulcate and tricolpate, respectively) are the two most common types. Here, we investigate the phylogenetic distribution in angiosperms of pollen with many round, scattered apertures called pantoporate pollen. METHODS: We constructed a morphological data set with species producing pantoporate pollen and representative angiosperm species with other pollen types, sampled from every angiosperm order, with a total of 1260 species distributed in 330 families. This data set was analyzed with parsimony to characterize the phylogenetic distribution of pantoporate pollen in angiosperms. KEY RESULTS: We show that pantoporate pollen is distributed throughout most of the angiosperm tree, including early diverging angiosperms, monocots, and eudicots. However, this pollen type is usually restricted to a few species in a given group, and is seldom fixed at large taxonomical scales, with a few notable exceptions. CONCLUSIONS: Pantoporate pollen evolved many times during angiosperm history, but the persistence of this morphology in the long term is infrequent. This distribution pattern could indicate conflicting short-term and long-term selective pressures, pantoporate pollen being selected in the short run, but eliminated in the long run. Biological hypotheses supporting this scenario are discussed, in the context of both theoretical and empirical data on pollen biology.


Asunto(s)
Evolución Biológica , Magnoliopsida/genética , Magnoliopsida/fisiología , Modelos Genéticos , Polen/citología , Polen/genética , Polen/fisiología
4.
Nat Commun ; 8: 16047, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28763051

RESUMEN

Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms.


Asunto(s)
Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Evolución Biológica , Fenotipo , Filogenia
5.
Am J Bot ; 103(3): 452-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26960348

RESUMEN

PREMISE OF THE STUDY: Pollen grains are subject to intense dehydration before dispersal. They rehydrate after landing on a stigma or when placed in humid environment by absorbing water from the stigma or surroundings. Resulting fluctuations in water content cause pollen grains to undergo significant changes in volume. Thus, morphological or structural adaptations might exist to help pollen adjust to sudden volume changes, though little is known about the correlation between pollen morphology and its ability to accommodate volume changes. We studied the effect of one morphological feature of pollen grains, the aperture number, on pollen wall resistance to water inflow in Arabidopsis thaliana. METHODS: We used three Arabidopsis thaliana mutants that differ in the number of apertures in their pollen (zero, four, or a mix of four to eight, respectively) and the wild type with pollen with three apertures. We tested pollen survival in solutions with various mannitol concentrations. KEY RESULTS: The number of intact pollen grains increased with increasing mannitol concentration for all pollen morphs tested. At a given mannitol concentration, however, an increase in aperture number was associated with an increase in pollen breakage. CONCLUSIONS: Aperture patterns, i.e., number, shape, and position, influence the capacity to accommodate volume variations in pollen grains. When subjected to water inflow, pollen grains with few apertures survive better than pollen with many apertures. Trade-offs between survival and germination are likely to be involved in the evolution of pollen morphology.


Asunto(s)
Arabidopsis/genética , Mutación/genética , Polen/anatomía & histología , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Genotipo , Modelos Lineales , Manitol/farmacología , Presión Osmótica/efectos de los fármacos , Polen/efectos de los fármacos
6.
New Phytol ; 209(1): 376-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26248868

RESUMEN

The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern.


Asunto(s)
Magnoliopsida/fisiología , Polen/fisiología , Selección Genética , Evolución Biológica , Gametogénesis en la Planta , Magnoliopsida/citología , Magnoliopsida/genética , Fenotipo , Filogenia , Polen/citología , Polen/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA