Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Dermatol ; 32(7): 1016-1027, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029962

RESUMEN

An in-depth understanding of the mechanical properties of the dermis is indispensable to improve wound healing or slow-down skin ageing. Despite crucial research issues for dermatological and cosmetic industries, very little is known about the mechanical behaviour of the dermis at nanoscale level. This knowledge is relevant not only to human skin but also to mouse skin since this animal model is widely used in basic and preclinical studies for skin biology and health. Here, we describe an original protocol that we developed to specifically measure the mechanical properties of mouse dermis using atomic force microscopy-based nano-indentation approach. Using horizontal cryosections (i.e. parallel to the skin surface) performed at different depths through the dermis of dorsal skin, our protocol allowed us to detect nanoscale mechanical changes between female and male dermis samples. We found that the dermis was softer (i) in females than in males and (ii) with depth within the dermis of male mice. We also quantified compositional differences between female and male skin dermis and found that increased extracellular matrix gene expression and type V collagen staining were associated with increased dermal stiffness in male mice, compared with females. Our results demonstrating a sexual dimorphism in the nanomechanical properties and molecular composition of mouse dermis, open the way to better consider sex-related cutaneous differences to understand skin disease and to stimulate the development of female versus male-specific products with more appropriate dermatological treatments and cosmetic interventions.


Asunto(s)
Dermis , Caracteres Sexuales , Masculino , Femenino , Humanos , Ratones , Animales , Microscopía de Fuerza Atómica/métodos , Fenómenos Biomecánicos , Piel
2.
Front Immunol ; 12: 613438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054795

RESUMEN

Transforming growth factor-ß (TGF-ß) isoforms are secreted as inactive complexes formed through non-covalent interactions between bioactive TGF-ß entities and their N-terminal pro-domains called latency-associated peptides (LAP). Extracellular activation of latent TGF-ß within this complex is a crucial step in the regulation of TGF-ß activity for tissue homeostasis and immune cell function. We previously showed that the matrix glycoprotein Tenascin-X (TN-X) interacted with the small latent TGF-ß complex and triggered the activation of the latent cytokine into a bioactive TGF-ß. This activation most likely occurs through a conformational change within the latent TGF-ß complex and requires the C-terminal fibrinogen-like (FBG) domain of the glycoprotein. As the FBG-like domain is highly conserved among the Tenascin family members, we hypothesized that Tenascin-C (TN-C), Tenascin-R (TN-R) and Tenascin-W (TN-W) might share with TN-X the ability to regulate TGF-ß bioavailability through their C-terminal domain. Here, we demonstrate that purified recombinant full-length Tenascins associate with the small latent TGF-ß complex through their FBG-like domains. This association promotes activation of the latent cytokine and subsequent TGF-ß cell responses in mammary epithelial cells, such as cytostasis and epithelial-to-mesenchymal transition (EMT). Considering the pleiotropic role of TGF-ß in numerous physiological and pathological contexts, our data indicate a novel common function for the Tenascin family in the regulation of tissue homeostasis under healthy and pathological conditions.


Asunto(s)
Tenascina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Células Epiteliales/metabolismo , Homeostasis , Humanos , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transducción de Señal , Proteínas Smad/química , Proteínas Smad/metabolismo , Relación Estructura-Actividad , Tenascina/química , Tenascina/genética , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/genética
3.
Front Immunol ; 12: 612271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889150

RESUMEN

Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide and is predicted to become second in 2030 in industrialized countries if no therapeutic progress is made. Among the different types of pancreatic cancers, Pancreatic Ductal Adenocarcinoma (PDAC) is by far the most represented one with an occurrence of more than 90%. This specific cancer is a devastating malignancy with an extremely poor prognosis, as shown by the 5-years survival rate of 2-9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Pancreatic tumors progress with few specific symptoms and are thus at an advanced stage at diagnosis in most patients. This malignancy is characterized by an extremely dense stroma deposition around lesions, accompanied by tissue hypovascularization and a profound immune suppression. Altogether, these combined features make access to cancer cells almost impossible for conventional chemotherapeutics and new immunotherapeutic agents, thus contributing to the fatal outcomes of the disease. Initially ignored, the Tumor MicroEnvironment (TME) is now the subject of intensive research related to PDAC treatment and could contain new therapeutic targets. In this review, we will summarize the current state of knowledge in the field by focusing on TME composition to understand how this specific compartment could influence tumor progression and resistance to therapies. Attention will be paid to Tenascin-C, a matrix glycoprotein commonly upregulated during cancer that participates to PDAC progression and thus contributes to poor prognosis.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Células del Estroma/metabolismo , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/terapia , Transformación Celular Neoplásica/metabolismo , Humanos , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Células del Estroma/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA