Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 31(1): 150-158, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062208

RESUMEN

Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.


Asunto(s)
Dióxido de Carbono , Hierro , Hierro/metabolismo , Dióxido de Carbono/química , Oxidación-Reducción , Nitrogenasa/química , Nitrogenasa/metabolismo , Hidrocarburos/metabolismo
2.
ACS Synth Biol ; 12(12): 3521-3530, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37983631

RESUMEN

Glycolyl-CoA carboxylase (GCC) is a new-to-nature enzyme that catalyzes the key reaction in the tartronyl-CoA (TaCo) pathway, a synthetic photorespiration bypass that was recently designed to improve photosynthetic CO2 fixation. GCC was created from propionyl-CoA carboxylase (PCC) through five mutations. However, despite reaching activities of naturally evolved biotin-dependent carboxylases, the quintuple substitution variant GCC M5 still lags behind 4-fold in catalytic efficiency compared to its template PCC and suffers from futile ATP hydrolysis during CO2 fixation. To further improve upon GCC M5, we developed a machine learning-supported workflow that reduces screening efforts for identifying improved enzymes. Using this workflow, we present two novel GCC variants with 2-fold increased carboxylation rate and 60% reduced energy demand, respectively, which are able to address kinetic and thermodynamic limitations of the TaCo pathway. Our work highlights the potential of combining machine learning and directed evolution strategies to reduce screening efforts in enzyme engineering.


Asunto(s)
Dióxido de Carbono , Carboxiliasas , Dióxido de Carbono/metabolismo , Carboxiliasas/metabolismo , Metilmalonil-CoA Descarboxilasa , Biotina/metabolismo , Acetil-CoA Carboxilasa/genética
3.
Sci Adv ; 9(22): eadg6689, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267359

RESUMEN

Aldehyde oxidoreductases (AORs) are tungsten enzymes catalyzing the oxidation of many different aldehydes to the corresponding carboxylic acids. In contrast to other known AORs, the enzyme from the denitrifying betaproteobacterium Aromatoleum aromaticum (AORAa) consists of three different subunits (AorABC) and uses nicotinamide adenine dinucleotide (NAD) as an electron acceptor. Here, we reveal that the enzyme forms filaments of repeating AorAB protomers that are capped by a single NAD-binding AorC subunit, based on solving its structure via cryo-electron microscopy. The polyferredoxin-like subunit AorA oligomerizes to an electron-conducting nanowire that is decorated with enzymatically active and W-cofactor (W-co) containing AorB subunits. Our structure further reveals the binding mode of the native substrate benzoate in the AorB active site. This, together with quantum mechanics:molecular mechanics (QM:MM)-based modeling for the coordination of the W-co, enables formulation of a hypothetical catalytic mechanism that paves the way to further engineering for applications in synthetic biology and biotechnology.


Asunto(s)
Aldehído Oxidorreductasas , Nanocables , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Tungsteno/metabolismo , NAD , Microscopía por Crioelectrón , Aldehído Deshidrogenasa
4.
Nat Commun ; 13(1): 6315, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274063

RESUMEN

Various microbial metabolisms use H+/Na+-translocating ferredoxin:NAD+ reductase (Rnf) either to exergonically oxidize reduced ferredoxin by NAD+ for generating a transmembrane electrochemical potential or reversely to exploit the latter for producing reduced ferredoxin. For cryo-EM structural analysis, we elaborated a quick four-step purification protocol for the Rnf complex from Clostridium tetanomorphum and integrated the homogeneous and active enzyme into a nanodisc. The obtained 4.27 Å density map largely allows chain tracing and redox cofactor identification complemented by biochemical data from entire Rnf and single subunits RnfB, RnfC and RnfG. On this basis, we postulated an electron transfer route between ferredoxin and NAD via eight [4Fe-4S] clusters, one Fe ion and four flavins crossing the cell membrane twice related to the pathway of NADH:ubiquinone reductase. Redox-coupled Na+ translocation is provided by orchestrating Na+ uptake/release, electrostatic effects of the assumed membrane-integrated FMN semiquinone anion and accompanied polypeptide rearrangements mediated by different redox steps.


Asunto(s)
Clostridium tetanomorphum , Ferredoxinas , Ferredoxinas/metabolismo , Oxidorreductasas/metabolismo , NAD/metabolismo , Mononucleótido de Flavina/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Oxidación-Reducción , Sodio/metabolismo , Flavinas/metabolismo
5.
Science ; 378(6616): 155-160, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227987

RESUMEN

The evolution of ribulose-1,5-bisphosphate carboxylase/oxygenases (Rubiscos) that discriminate strongly between their substrate carbon dioxide and the undesired side substrate dioxygen was an important event for photosynthetic organisms adapting to an oxygenated environment. We use ancestral sequence reconstruction to recapitulate this event. We show that Rubisco increased its specificity and carboxylation efficiency through the gain of an accessory subunit before atmospheric oxygen was present. Using structural and biochemical approaches, we retrace how this subunit was gained and became essential. Our work illuminates the emergence of an adaptation to rising ambient oxygen levels, provides a template for investigating the function of interactions that have remained elusive because of their essentiality, and sheds light on the determinants of specificity in Rubisco.


Asunto(s)
Dióxido de Carbono , Dominio Catalítico , Evolución Molecular , Ribulosa-Bifosfato Carboxilasa , Dióxido de Carbono/química , Oxígeno/química , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Especificidad por Sustrato , Dominio Catalítico/genética , Metagenoma , Firmicutes/enzimología
6.
Elife ; 102021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34180399

RESUMEN

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.


Asunto(s)
Halorhodospira halophila/genética , Ribonucleasa P/genética , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Microscopía por Crioelectrón , Halorhodospira halophila/metabolismo , Ribonucleasa P/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(50): 31838-31849, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33229582

RESUMEN

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.


Asunto(s)
GTP Ciclohidrolasa/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Regulación Alostérica , Sitio Alostérico/genética , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/ultraestructura , Mutagénesis Sitio-Dirigida , Fenilalanina/metabolismo , Estructura Cuaternaria de Proteína
8.
Front Microbiol ; 11: 480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300335

RESUMEN

Some anaerobic bacteria use biotin-dependent Na+-translocating decarboxylases (Bdc) of ß-keto acids or their thioester analogs as key enzymes in their energy metabolism. Glutaconyl-CoA decarboxylase (Gcd), a member of this protein family, drives the endergonic translocation of Na+ across the membrane with the exergonic decarboxylation of glutaconyl-CoA (ΔG 0' ≈-30 kJ/mol) to crotonyl-CoA. Here, we report on the molecular characterization of Gcd from Clostridium symbiosum based on native PAGE, size exclusion chromatography (SEC) and laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS). The obtained molecular mass of ca. 400 kDa fits to the DNA sequence-derived mass of 379 kDa with a subunit composition of 4 GcdA (65 kDa), 2 GcdB (35 kDa), GcdC1 (15 kDa), GcdC2 (14 kDa), and 2 GcdD (10 kDa). Low-resolution structural information was achieved from preliminary electron microscopic (EM) measurements, which resulted in a 3D reconstruction model based on negative-stained particles. The Gcd structure is built up of a membrane-spanning base primarily composed of the GcdB dimer and a solvent-exposed head with the GcdA tetramer as major component. Both globular parts are bridged by a linker presumably built up of segments of GcdC1, GcdC2 and the 2 GcdDs. The structure of the highly mobile Gcd complex represents a template for the global architecture of the Bdc family.

9.
Sci Adv ; 5(12): eaax9484, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31844670

RESUMEN

Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-Å resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Complejo I de Transporte de Electrón/ultraestructura , Mitocondrias/ultraestructura , Yarrowia/ultraestructura , Adenosina Trifosfato/química , Complejo I de Transporte de Electrón/genética , Humanos , Mitocondrias/genética , Membranas Mitocondriales , Conformación Proteica , Yarrowia/genética
10.
Proc Natl Acad Sci U S A ; 116(20): 10048-10057, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036670

RESUMEN

Retroviruses evolved from long terminal repeat (LTR) retrotransposons by acquisition of envelope functions, and subsequently reinvaded host genomes. Together, endogenous retroviruses and LTR retrotransposons represent major components of animal, plant, and fungal genomes. Sequences from these elements have been exapted to perform essential host functions, including placental development, synaptic communication, and transcriptional regulation. They encode a Gag polypeptide, the capsid domains of which can oligomerize to form a virus-like particle. The structures of retroviral capsids have been extensively described. They assemble an immature viral particle through oligomerization of full-length Gag. Proteolytic cleavage of Gag results in a mature, infectious particle. In contrast, the absence of structural data on LTR retrotransposon capsids hinders our understanding of their function and evolutionary relationships. Here, we report the capsid morphology and structure of the archetypal Gypsy retrotransposon Ty3. We performed electron tomography (ET) of immature and mature Ty3 particles within cells. We found that, in contrast to retroviruses, these do not change size or shape upon maturation. Cryo-ET and cryo-electron microscopy of purified, immature Ty3 particles revealed an irregular fullerene geometry previously described for mature retrovirus core particles and a tertiary and quaternary arrangement of the capsid (CA) C-terminal domain within the assembled capsid that is conserved with mature HIV-1. These findings provide a structural basis for studying retrotransposon capsids, including those domesticated in higher organisms. They suggest that assembly via a structurally distinct immature capsid is a later retroviral adaptation, while the structure of mature assembled capsids is conserved between LTR retrotransposons and retroviruses.


Asunto(s)
Evolución Biológica , Cápside/ultraestructura , Retroviridae/ultraestructura , Microscopía por Crioelectrón , Retroviridae/genética
11.
J Neurosci ; 36(8): 2377-82, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911686

RESUMEN

Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.


Asunto(s)
Estimulación Acústica/métodos , Células Ciliadas Auditivas/fisiología , Activación del Canal Iónico/fisiología , Mecanorreceptores/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Gryllidae , Masculino
12.
J Virol ; 89(17): 8957-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085153

RESUMEN

UNLABELLED: The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like. IMPORTANCE: Influenza A virus is a major respiratory pathogen. It assembles membrane-enveloped virus particles whose shapes vary from spherical to filamentous. Here we examine the roles of individual viral proteins in mediating virus assembly and determining virus shape. To do this, we used a range of electron microscopy techniques to obtain and compare two- and three-dimensional images of virus particles and virus-like particles during and after assembly. The virus-like particles were produced using different combinations of viral proteins. Among our results, we found that coexpression of one or both of the viral surface proteins (hemagglutinin and neuraminidase) with the viral membrane-associated proteins encoded by the M segment results in assembly and release of filamentous virus-like particles in a manner very similar to that of the budding and release of influenza virions. These data provide novel insights into the roles played by individual viral proteins in influenza A virus assembly.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H2N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Neuraminidasa/metabolismo , Proteínas de la Matriz Viral/metabolismo , Línea Celular , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Neuraminidasa/biosíntesis , Neuraminidasa/genética , Proteínas de la Matriz Viral/biosíntesis , Proteínas de la Matriz Viral/genética , Ensamble de Virus/genética , Liberación del Virus/genética
13.
Dev Cell ; 33(2): 150-62, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25898165

RESUMEN

Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Dictyostelium/metabolismo , Endocitosis/fisiología , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Levaduras/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Fosforilación , Estructura Terciaria de Proteína , Vesículas Transportadoras
14.
Biol Chem ; 395(7-8): 801-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25003385

RESUMEN

As shape transformations of membranes are vital for intracellular trafficking, it is crucial to understand both the mechanics and the biochemistry of these processes. The interplay of these two factors constitutes an experimental challenge, however, because biochemical experiments are not tailored to the investigation of mechanical processes, and biophysical studies using model membranes are not capable of emulating native biological complexity. Reconstituted liposome-based model systems have been widely used for investigating the formation of transport vesicles by the COPII complex that naturally occurs at the endoplasmic reticulum. Here we have revisited these model systems, to address the influence of lipid composition, GTP hydrolyzing conditions and mechanical perturbation on the experimental outcome. We observed that the lipid-dependence of COPII-induced membrane remodeling differs from that predicted based on the lipid-dependence of COPII membrane binding. Under GTP non-hydrolyzing conditions, a structured coat was seen while GTP-hydrolyzing conditions yielded uncoated membranes as well as membranes coated by a thick protein coat of rather unstructured appearance. Detailed up-to-date protocols for purifications of Saccharomyces cerevisiae COPII proteins and for reconstituted reactions using these proteins with giant liposomes are also provided.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Vesículas Cubiertas por Proteínas de Revestimiento/química , Modelos Moleculares
15.
Elife ; 2: e00951, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24062940

RESUMEN

Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Transporte Biológico , Membrana Celular/metabolismo
16.
Science ; 336(6087): 1451-4, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22628556

RESUMEN

Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Proteína Coat de Complejo I/química , Proteína Coatómero/química , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Ratones , Modelos Moleculares , Conformación Proteica
17.
Nucleic Acids Res ; 40(7): 3275-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22167472

RESUMEN

Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/ultraestructura , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Proteínas Portadoras/química , Endodesoxirribonucleasas/química , Modelos Moleculares , Subunidades de Proteína/química , ARN/química , Ribonucleasas/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química
18.
J Cell Biol ; 194(5): 765-77, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21893600

RESUMEN

Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Proteína Coatómero/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Sustitución de Aminoácidos/fisiología , Animales , Autoantígenos/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Reactivos de Enlaces Cruzados/metabolismo , Reactivos de Enlaces Cruzados/efectos de la radiación , Microscopía por Crioelectrón , Cisteína/genética , Cisteína/metabolismo , Proteínas del Citoesqueleto , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/patología , Aparato de Golgi/fisiología , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/fisiología , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación/fisiología , N-Acetil-Lactosamina Sintasa/metabolismo , Proteínas Nucleares/metabolismo , Procesos Fotoquímicos , Unión Proteica/fisiología , Multimerización de Proteína/fisiología , Conejos , Ratas , Ratas Endogámicas , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Liposomas Unilamelares/metabolismo , alfa-Manosidasa/metabolismo
19.
Sci Rep ; 1: 17, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22355536

RESUMEN

COPII-coated vesicles form at the endoplasmic reticulum for cargo transport to the Golgi apparatus. We used in vitro reconstitution to examine the roles of the COPII scaffold in remodeling the shape of a lipid bilayer. Giant Unilamellar Vesicles were examined using fast confocal fluorescence and cryo-electron microscopy in order to avoid separation steps and minimize mechanical manipulation. COPII showed a preference for high curvature structures, but also sufficient flexibility for binding to low curvatures. The COPII proteins induced beads-on-a-string-like constricted tubules, similar to those previously observed in cells. We speculate about a mechanical pathway for vesicle fission from these multibudded COPII-coated tubules, considering the possibility that withdrawal of the Sar1 amphipathic helix upon GTP hydrolysis leads to lipid bilayer destabilization resulting in fission.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Extensiones de la Superficie Celular/química , Extensiones de la Superficie Celular/ultraestructura , Membrana Dobles de Lípidos/química , Liposomas/química , Fluidez de la Membrana , Materiales Biomiméticos/química , Ensayo de Materiales
20.
Structure ; 16(12): 1789-98, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19081055

RESUMEN

Vacuolar ATPases (V-ATPases) are ATP-dependent proton pumps that maintain the acidity of cellular compartments. They are composed of a membrane-integrated proton-translocating V(0) and an extrinsic cytoplasmic catalytic domain V(1), joined by several connecting subunits. To clarify the arrangement of these peripheral connections and their interrelation with other subunits of the holocomplex, we have determined the solution structures of isolated EG and EGC connecting subcomplexes by small angle X-ray scattering and the 3D map of the yeast V-ATPase by electron microscopy. In solution, EG forms a slightly kinked rod, which assembles with subunit C into an L-shaped structure. This model is supported by the microscopy data, which show three copies of EG with two of these linked by subunit C. However, the relative arrangement of the EG and C subunits in solution is more open than that in the holoenzyme, suggesting a conformational change of EGC during regulatory assembly and disassembly.


Asunto(s)
Conformación Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Procesamiento de Imagen Asistido por Computador , Luz , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/ultraestructura , Dispersión de Radiación , Solubilidad , Soluciones/química , Relación Estructura-Actividad , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/aislamiento & purificación , ATPasas de Translocación de Protón Vacuolares/ultraestructura , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...