Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 286: 119283, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337505

RESUMEN

A novel nanocomposite comprised of cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) was prepared through solution casting to evaluate potential improvements of the mechanical performance compared to individual reinforcements alone. Such materials can be implemented as mechanical reinforcements in polymer composites, especially when less weight is desired. Dissipative particle dynamics (DPD) simulations, in combination with polarized light microscopy and atomic force microscopy, were analyzed to evaluate the morphology of these combined cellulose nanomaterial (CNM) films. Our results indicate that TOCNFs provide enhanced translational mobility to CNCs which become incorporated near the crystalline domains of TOCNFs. This mobility enables CNCs to increase the rigidity of the network without sacrificing elongation and toughness. The combination of these materials provides improved ultimate tensile strength and elongation without sacrificing the Young's modulus. Therefore, a combination of these materials can be used to develop nanocomposites with enhanced mechanical properties.

2.
J Colloid Interface Sci ; 603: 450-458, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34214721

RESUMEN

HYPOTHESIS: Radial capillary flow in evaporating droplets carry suspended nanoparticles to its periphery where they are deposited and form a coffee-ring. Rod-like nanoparticles seeking to minimize their capillary energy will align with their long-axis parallel to the contact line. Particles exhibiting electrostatic repulsion, such as cellulose nanocrystals (CNCs), establish a competition between capillary flow-induced impingement against a growing coffee-ring and entropic minimization leading to enhanced particle mobility. Therefore, balancing these effects by manipulating the local particle concentration in drying droplets should result in deposition with a controlled orientation of CNCs. EXPERIMENTS: The dynamic local order in aqueous suspensions of CNCs in evaporating sessile droplets was investigated through time-resolved polarized light microscopy. The spatial distribution of alignment in deposited CNCs was explored as a function of nanoparticle concentration, droplet volume, initial degree of anisotropy, and substrate hydrophobicity. Computational analysis of the rotational Péclet number during evaporation was also investigated to evaluate any effects of shear-induced alignment. FINDINGS: Multiple modes of orientation were identified suggesting local control over CNC orientation and subsequent properties can be attained via droplet-based patterning methods. Specifically, high local particle concentrations led to tangential alignment and lower local particle concentrations resulted in new evidence for radial alignment near the center of dried droplets.


Asunto(s)
Celulosa , Nanopartículas , Anisotropía , Desecación , Suspensiones
3.
React Chem Eng ; 4(3): 634-642, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33456973

RESUMEN

Continuous flow chemistry has the potential to greatly improve efficiency in the synthesis of active pharmaceutical ingredients (APIs); however, the optimization of these processes can be complicated by a large number of variables affecting reaction success. In this work, a screening design of experiments was used to compare computational fluid dynamics (CFD) simulations with experimental results. CFD simulations and experimental results both identified the reactor residence time and reactor temperature as the most significant factors affecting product yield for this reaction within the studied design space. A point-to-point comparison of the results showed absolute differences in product yield as low as 2.4% yield at low residence times and up to 19.1% yield at high residence times with strong correlation between predicted and experimental percent yields. CFD was found to underestimate the product yields at low residence times and overestimate at higher residence times. The correlation in predicted product yield and the agreement in identifying significant factors in reaction performance reveals the utility of CFD as a valuable tool in the design of continuous flow tube reactors with significantly reduced experimentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...