Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Res Pract Thromb Haemost ; 3(2): 173-183, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31011701

RESUMEN

ABSTRACT: Fibrinogen, involved in coagulation, is a soluble protein composed of two sets of disulfide-bridged Aα, Bß, and γ-chains. In this review, we present the clinical implications of the αC domain of the molecule in Alzheimer's disease, hereditary renal amyloidosis and a number of thrombotic and hemorrhagic disorders. In Alzheimer's disease, amyloid beta peptide (Aß) is increased and binds to the αC domain of normal fibrinogen, triggering increased fibrin(ogen) deposition in patients' brain parenchyma. In hereditary renal amyloidosis, fibrinogen is abnormal, with mutations located in the fibrinogen αC domain. The mutant αC domain derived from fibrinogen degradation folds incorrectly so that, in time, aggregates form, leading to amyloid deposits in the kidneys. In these patients, no thrombotic tendency has been observed. Abnormal fibrinogens with either a point mutation in the αC domain or a frameshift mutation resulting in absence of a part of the αC domain are often associated with either thrombotic events or bleeding. Mutation of an amino acid into cysteine (as in fibrinogens Dusart and Caracas V) or a frameshift mutation yielding an unpaired cysteine in the αC domain is often responsible for thrombotic events. Covalent binding of albumin to the unpaired cysteine via a disulphide bridge leads to decreased accessibility to the fibrinolytic enzymes, hence formation of poorly degradable fibrin clots, which explains the high incidence of thrombosis. In contrast, anomalies due to a frameshift mutation in the αC connector of the molecule, provoking deletion of a great part of the αC domain, are associated with bleeding.

2.
Cell Cycle ; 15(5): 667-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27027998

RESUMEN

MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3' untranslated region (3'UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3'UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , MicroARNs/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Interferencia de ARN
3.
J Soc Biol ; 201(4): 367-76, 2007.
Artículo en Francés | MEDLINE | ID: mdl-18533097

RESUMEN

Deciphering the mechanisms underlying skeletal muscle differentiation in mammals is an important challenge. Cell differentiation involves complex pathways regulated at both transcriptional and post-transcriptional levels. Recent observations have revealed the importance of small (20-25 base pairs) non-coding RNAs (microRNAs or miRNAs) that are expressed in both lower organisms and in mammals. miRNAs modulate gene expression by affecting mRNA translation or stability. In lower organisms, miRNAs are essential for cell differentiation during development; some miRNAs are involved in maintenance of the differentiated state. We have shown that miR-181, a microRNA that is strongly upregulated during differentiation, participates in establishing the muscle phenotype. Moreover, our results suggest that miR-181 downregulates the homeobox protein Hox-A11 (a repressor of the differentiation process), thus establishing a functional link between miR-181 and the complex process of mammalian skeletal muscle differentiation. Therefore, miRNAs can be involved in the establishment of a differentiated phenotype - even when they are not expressed in the corresponding fully differentiated tissue.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Animales , Proteínas Argonautas/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/fisiología , Humanos , Mamíferos , Ratones , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Mioblastos/citología , Oligonucleótidos Antisentido/farmacología , Interferencia de ARN , Complejo Silenciador Inducido por ARN/genética , Ribonucleasa III/fisiología
4.
EMBO Rep ; 7(11): 1140-6, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17028574

RESUMEN

Acetylation is a post-translational modification that influences the activity of numerous proteins in vitro. Among them, the myogenic transcription factor MyoD shows an increased transcriptional activity in vitro when acetylated on two lysines (K): lysines 99 and 102. Here, we have investigated the biological relevance of this acetylation in vivo. Using specific antibodies, we show that endogenous MyoD is acetylated on lysines 99 and 102 in myoblasts. Moreover, we show the functional importance of acetylation in live animals by using a mutant of MyoD in which lysines 99 and 102 were replaced by arginines (R). Knock-in embryos homozygous for the MyoD(R99,102) allele expressed slightly reduced levels of MyoD but developed normally. However, the knock-in homozygous adult mice showed a phenotype that was almost identical to that of MyoD-knockout animals, including delayed muscle regeneration in vivo and an increased number of myoblasts but with reduced differentiation potential in vitro. Together, these results show the importance of MyoD acetylation for adult myogenesis.


Asunto(s)
Células Madre Embrionarias/metabolismo , Desarrollo de Músculos , Músculo Esquelético/fisiología , Proteína MioD/fisiología , Mioblastos/metabolismo , Acetilación , Alelos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Homocigoto , Lisina/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Fenotipo , Transfección
5.
Oncogene ; 23(54): 8777-84, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15467736

RESUMEN

PLZF, the promyelocytic leukaemia zinc-finger protein, is a transcriptional repressor essential to development. In some acute leukaemias, a chromosomal translocation fusing the PLZF gene to that encoding the retinoic acid receptor RARalpha gives rise to a fusion protein, PLZF-RARalpha, thought to be responsible for constitutive repression of differentiation-associated genes in these cells. Repression by both PLZF and PLZF-RARalpha is sensitive to the histone deacetylase inhibitor TSA, and PLZF was previously shown to interact physically with HDAC1, a class I histone deacetylase. We here asked whether class II histone deacetylases, known to be generally involved in differentiation processes, participate in the repression mediated by PLZF and PLZF-RARalpha, and found that PLZF interacts with HDAC4 in both GST-pull-down and co-immunoprecipitation assays. Furthermore, HDAC4 is indeed involved in PLZF and PLZF-RARalpha-mediated repression, since an enzymatically dead mutant of HDAC4 released the repression, as did an siRNA that blocks HDAC4 expression. Taken together, our data indicate that recruitment of HDAC4 is necessary for PLZF-mediated repression in both normal and leukaemic cells.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Histona Desacetilasas/fisiología , Leucemia Promielocítica Aguda/metabolismo , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Células HeLa , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel , Ratones , Células 3T3 NIH , Proteínas de Neoplasias/fisiología , Proteínas de Fusión Oncogénica/fisiología , Proteína de la Leucemia Promielocítica con Dedos de Zinc
6.
J Biol Chem ; 278(26): 23278-84, 2003 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-12709443

RESUMEN

Tumor necrosis factor-alpha (TNF-alpha) and lymphotoxin-beta receptor (LTbetaR) signaling both play important roles in inflammatory and immune responses through activation of NF-kappaB. Using various deficient mouse embryonic fibroblast cells, we have compared the signaling pathways leading to NF-kappaB induction in response to TNF-alpha and LTbetaR activation. We demonstrate that LTbetaR ligation induces not only RelA/p50 dimers but also RelB/p50 dimers, whereas TNF-alpha induces only RelA/p50 dimers. LTbetaR-induced binding of RelB/p50 requires processing of p100 that is mediated by IKKalpha but is independent of IKKbeta, NEMO/IKKgamma, and RelA. Moreover, we show that RelB, p50, and p100 can associate in the same complex and that TNF-alpha but not LTbeta signaling increases the association of p100 with RelB/p50 dimers in the nucleus, leading to the specific inhibition of RelB DNA binding. These results suggest that the alternative NF-kappaB pathway based on p100 processing may account not only for the activation of RelB/p52 dimers but also for that of RelB/p50 dimers and that p100 regulates the binding activity of RelB/p50 dimers via at least two distinct mechanisms depending on the signaling pathway involved.


Asunto(s)
FN-kappa B/metabolismo , Proteínas Nucleares/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Transporte Activo de Núcleo Celular , Animales , ADN/metabolismo , Dimerización , Endonucleasas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B , Proteínas I-kappa B/metabolismo , Receptor beta de Linfotoxina , Ratones , Subunidad p50 de NF-kappa B , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Receptores del Factor de Necrosis Tumoral/fisiología , Factor de Transcripción ReIB , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA