Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1180, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277489

RESUMEN

Introgression has been proposed as an essential source of adaptive genetic variation. However, a key barrier to adaptive introgression is that recombination can break down combinations of alleles that underpin many traits. This barrier might be overcome in supergene regions, where suppressed recombination leads to joint inheritance across many loci. Here, we study the evolution of a large supergene region that determines a major social and ecological trait in Solenopsis fire ants: whether colonies have one queen or multiple queens. Using coalescent-based phylogenies built from the genomes of 365 haploid fire ant males, we show that the supergene variant responsible for multiple-queen colonies evolved in one species and repeatedly spread to other species through introgressive hybridization. This finding highlights how supergene architecture can enable a complex adaptive phenotype to recurrently permeate species boundaries.


Asunto(s)
Hormigas , Conducta Social , Alelos , Animales , Hormigas/genética , Masculino , Filogenia
2.
Methods Mol Biol ; 1962: C1, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667803

RESUMEN

This book was published with References 17 and 18 in the incorrect order.

3.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411700

RESUMEN

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Asunto(s)
Biología Computacional/métodos , Técnicas Genéticas , Programas Informáticos
4.
Methods Mol Biol ; 1962: 257-267, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020566

RESUMEN

GeneValidator is a tool for determining whether the characteristics of newly predicted protein-coding genes are consistent with those of similar sequences in public databases. For this, it runs up to seven comparisons per gene. Results are shown in an HTML report containing summary statistics and graphical visualizations that aim to be useful for curators. Results are also presented in CSV and JSON formats for automated follow-up analysis.Here, we describe common usage scenarios of GeneValidator that use the JSON output results together with standard UNIX tools. We demonstrate how GeneValidator's textual output can be used to filter and subset large gene sets effectively. First, we explain how low-scoring gene models can be identified and extracted for manual curation-for example, as input for genome browsers or gene annotation tools. Second, we show how GeneValidator's HTML report can be regenerated from a filtered subset of GeneValidator's JSON output. Subsequently, we demonstrate how GeneValidator's GUI can be used to complement manual curation efforts. Additionally, we explain how GeneValidator can be used to merge information from multiple annotations by automatically selecting the higher-scoring gene model at each common gene locus. Finally, we show how GeneValidator analyses can be optimized when using large BLAST databases.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Proteínas/genética , Programas Informáticos , Curaduría de Datos , Anotación de Secuencia Molecular , Navegador Web , Flujo de Trabajo
5.
Mol Ecol ; 26(11): 2864-2879, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28220980

RESUMEN

Variation in social behaviour is common, yet little is known about the genetic architectures underpinning its evolution. A rare exception is in the fire ant Solenopsis invicta: Alternative variants of a supergene region determine whether a colony will have exactly one or up to dozens of queens. The two variants of this region are carried by a pair of 'social chromosomes', SB and Sb, which resemble a pair of sex chromosomes. Recombination is suppressed between the two chromosomes in the supergene region. While the X-like SB can recombine with itself in SB/SB queens, recombination is effectively absent in the Y-like Sb because Sb/Sb queens die before reproducing. Here, we analyse whole-genome sequences of eight haploid SB males and eight haploid Sb males. We find extensive SB-Sb differentiation throughout the >19-Mb-long supergene region. We find no evidence of 'evolutionary strata' with different levels of divergence comparable to those reported in several sex chromosomes. A high proportion of substitutions between the SB and Sb haplotypes are nonsynonymous, suggesting inefficacy of purifying selection in Sb sequences, similar to that for Y-linked sequences in XY systems. Finally, we show that the Sb haplotype of the supergene region has 635-fold less nucleotide diversity than the rest of the genome. We discuss how this reduction could be due to a recent selective sweep affecting Sb specifically or associated with a population bottleneck during the invasion of North America by the sampled population.


Asunto(s)
Hormigas/genética , Cromosomas/genética , Genes de Insecto , Variación Genética , Conducta Social , Animales , Haploidia , Masculino , América del Norte , Análisis de Secuencia de ADN
6.
Evol Lett ; 1(4): 199-210, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30283649

RESUMEN

Variation in social behavior is common yet our knowledge of the mechanisms underpinning its evolution is limited. The fire ant Solenopsis invicta provides a textbook example of a Mendelian element controlling social organization: alternate alleles of a genetic element first identified as encoding an odorant binding protein (OBP) named Gp-9 determine whether a colony accepts one or multiple queens. The potential roles of such a protein in perceiving olfactory cues and evidence of positive selection on its amino acid sequence made it an appealing candidate gene. However, we recently showed that recombination is suppressed between Gp-9 and hundreds of other genes as part of a >19 Mb supergene-like region carried by a pair of social chromosomes. This finding raises the need to reassess the potential role of Gp-9. We identify 23 OBPs in the fire ant genome assembly, including nine located in the region of suppressed recombination with Gp-9. For six of these, the alleles carried by the two variants of the supergene-like region differ in protein-coding sequence and thus likely in function, with Gp-9 showing the strongest evidence of positive selection. We identify an additional OBP specific to the Sb variant of the region. Finally, we find that 14 OBPs are differentially expressed between single- and multiple-queen colonies. These results are consistent with multiple OBPs playing a role in determining social structure.

7.
Bioinformatics ; 32(10): 1559-61, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26787666

RESUMEN

UNLABELLED: : Genomes of emerging model organisms are now being sequenced at very low cost. However, obtaining accurate gene predictions remains challenging: even the best gene prediction algorithms make substantial errors and can jeopardize subsequent analyses. Therefore, many predicted genes must be time-consumingly visually inspected and manually curated. We developed GeneValidator (GV) to automatically identify problematic gene predictions and to aid manual curation. For each gene, GV performs multiple analyses based on comparisons to gene sequences from large databases. The resulting report identifies problematic gene predictions and includes extensive statistics and graphs for each prediction to guide manual curation efforts. GV thus accelerates and enhances the work of biocurators and researchers who need accurate gene predictions from newly sequenced genomes. AVAILABILITY AND IMPLEMENTATION: GV can be used through a web interface or in the command-line. GV is open-source (AGPL), available at https://wurmlab.github.io/tools/genevalidator CONTACT: : y.wurm@qmul.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bases de Datos Genéticas , Proteínas/genética , Programas Informáticos , Genes , Valor Predictivo de las Pruebas
8.
Syst Biol ; 61(4): 675-89, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22357728

RESUMEN

In scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input-output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML.


Asunto(s)
Evolución Biológica , Biología Computacional/normas , Lenguajes de Programación , Biodiversidad , Clasificación , Informática , Modelos Biológicos , Filogenia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...