Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 23(4): 461-474, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029012

RESUMEN

Potato wart disease is considered one of the most important quarantine pests for cultivated potato and is caused by the obligate biotrophic chytrid fungus Synchytrium endobioticum. This review integrates observations from early potato wart research and recent molecular, genetic, and genomic studies of the pathogen and its host potato. Taxonomy, epidemiology, pathology, and formation of new pathotypes are discussed, and a model for molecular S. endobioticum-potato interaction is proposed. TAXONOMY: Currently classified as kingdom: Fungi, phylum: Chytridiomycota, class: Chytridiomycetes, order: Chytridiales, family: Synchytriaceae, genus: Synchytrium, species: Synchytrium endobioticum, there is strong molecular support for Synchytriaceae to be transferred to the order Synchytriales. HOSTS AND DISEASE SYMPTOMS: Solanum tuberosum is the main host for S. endobioticum but other solanaceous species have been reported as alternative hosts. It is not known if these alternative hosts play a role in the survival of the pathogen in (borders of) infested fields. Disease symptoms on potato tubers are characterized by the warty cauliflower-like malformations that are the result of cell enlargement and cell multiplication induced by the pathogen. Meristematic tissue on tubers, stolons, eyes, sprouts, and inflorescences can be infected while the potato root system seems to be immune. PATHOTYPES: For S. endobioticum over 40 pathotypes, which are defined as groups of isolates with a similar response to a set of differential potato varieties, are described. Pathotypes 1(D1), 2(G1), 6(O1), and 18(T1) are currently regarded to be most widespread. However, with the current differential set other pathogen diversity largely remains undetected. PATHOGEN-HOST INTERACTION: A single effector has been described for S. endobioticum (AvrSen1), which is recognized by the potato Sen1 resistance gene product. This is also the first effector that has been described in Chytridiomycota, showing that in this fungal division resistance also fits the gene-for-gene concept. Although significant progress was made in the last decade in mapping wart disease resistance loci, not all resistances present in potato breeding germplasm could be identified. The use of resistant varieties plays an essential role in disease management.


Asunto(s)
Quitridiomicetos , Solanum tuberosum , Verrugas , Quitridiomicetos/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología
2.
Theor Appl Genet ; 133(12): 3419-3439, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918590

RESUMEN

KEY MESSAGE: Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art "hitch-hikers-guide" of complementary wart disease resistance sources. Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.


Asunto(s)
Cromosomas de las Plantas/genética , Quitridiomicetos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
3.
Theor Appl Genet ; 133(9): 2713-2728, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32514711

RESUMEN

Self-compatible (SC) diploid potatoes allow innovative potato breeding. Therefore, the Sli gene, originally described in S. chacoense, has received much attention. In elite S. tuberosum diploids, spontaneous berry set is occasionally observed. We aimed to map SC from S. tuberosum origin. Two full-sib mapping populations from non-inbred diploids were used. Bulks were composed based on both pollen tube growth and berry set upon selfing. After DNA sequencing of the parents and bulks, we generated k-mer tables. Set algebra and depth filtering were used to identify bulk-specific k-mers. Coupling and repulsion phase k-mers, transmitted from the SC parent, mapped in both populations to the distal end of chromosome 12. Intersection between the k-mers from both populations, in coupling phase with SC, exposed a shared haplotype of approximately 1.5 Mb. Subsequently, we screened read archives of potatoes and wild relatives for k-mers specific to this haplotype. The well-known SC clones US-W4 and RH89-039-16, but surprisingly, also S. chacoense clone M6 were positives. Hence, the S. tuberosum source of SC seems identical to Sli. Furthermore, the candidate region drastically reduced to 333 kb. Haplotype-specific KASP markers were designed and validated on a panel of diploid clones including another renown SC dihaploid G254. Interestingly, k-mers specific to the SC haplotype were common in tetraploid varieties. Pedigree information suggests that the SC haplotype was introduced into tetraploid varieties via the founder "Rough Purple Chili". We show that Sli is surprisingly widespread and indigenous to the cultivated gene pool of potato.


Asunto(s)
Genética de Población , Fitomejoramiento , Solanum tuberosum/genética , Mapeo Cromosómico , Diploidia , Pool de Genes , Genes de Plantas , Marcadores Genéticos , Genotipo , Haplotipos , Fenotipo , Tubo Polínico/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple
4.
Theor Appl Genet ; 133(6): 1859-1871, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32043234

RESUMEN

KEY MESSAGE: A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNP markers associated with pathotype 1(D1) wart disease resistance. Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease. This paper addresses the challenge to apply molecular markers in potato breeding. Although markers linked to Sen1 were published before, the identification of haplotype-specific single-nucleotide polymorphisms may result in marker assays with high diagnostic value. To identify hs-SNP markers, we performed a genome-wide association study (GWAS) in a panel of 330 potato varieties representative of the commercial potato gene pool. SNP markers significantly associated with pathotype 1 resistance were identified on chromosome 11, at the position of the previously identified Sen1 locus. Haplotype specificity of the SNP markers was examined through the analysis of false positives and false negatives and validated in two independent full-sib populations. This paper illustrates why it is not always feasible to design markers without false positives and false negatives for marker-assisted selection. In the case of Sen1, founders could not be traced because of a lack of identity by descent and because of the decay of linkage disequilibrium between Sen1 and flanking SNP markers. Sen1 appeared to be the main source of pathotype 1 resistance in potato varieties, but it does not explain all the resistance observed. Recombination and introgression breeding may have introduced new, albeit rare haplotypes involved in pathotype 1 resistance. The GWAS approach, in such case, is instrumental to identify SNPs with the best possible diagnostic value for marker-assisted breeding.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , Cromosomas de las Plantas , Quitridiomicetos/patogenicidad , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Fenotipo , Sitios de Carácter Cuantitativo , Solanum tuberosum/microbiología
5.
Plant Methods ; 15: 60, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31160919

RESUMEN

BACKGROUND: Standard strategies to identify genomic regions involved in a specific trait variation are often limited by time and resource consuming genotyping methods. Other limiting pre-requisites are the phenotyping of large segregating populations or of diversity panels and the availability and quality of a closely related reference genome. To overcome these limitations, we designed efficient Comparative Subsequence Sets Analysis (CoSSA) workflows to identify haplotype specific SNPs linked to a trait of interest from Whole Genome Sequencing data. RESULTS: As a model, we used the resistance to Synchytrium endobioticum pathotypes 2, 6 and 18 that co-segregated in a tetraploid full sib population. Genomic DNA from both parents, pedigree genotypes, unrelated potato varieties lacking the wart resistance traits and pools of resistant and susceptible siblings were sequenced. Set algebra and depth filtering of subsequences (k-mers) were used to delete unlinked and common SNPs and to enrich for SNPs from the haplotype(s) harboring the resistance gene(s). Using CoSSA, we identified a major and a minor effect locus. Upon comparison to the reference genome, it was inferred that the major resistance locus, referred to as Sen3, was located on the north arm of chromosome 11 between 1,259,552 and 1,519,485 bp. Furthermore, we could anchor the unanchored superscaffold DMB734 from the potato reference genome to a synthenous interval. CoSSA was also successful in identifying Sen3 in a reference genome independent way thanks to the de novo assembly of paired end reads matching haplotype specific k-mers. The de novo assembly provided more R haplotype specific polymorphisms than the reference genome corresponding region. CoSSA also offers possibilities for pedigree analysis. The origin of Sen3 was traced back until Ora. Finally, the diagnostic power of the haplotype specific markers was shown using a panel of 56 tetraploid varieties. CONCLUSIONS: CoSSA is an efficient, robust and versatile set of workflows for the genetic analysis of a trait of interest using WGS data. Because the WGS data are used without intermediate reads mapping, CoSSA does not require the use of a reference genome. This approach allowed the identification of Sen3 and the design of haplotype specific, diagnostic markers.

6.
Mol Plant Microbe Interact ; 32(11): 1536-1546, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31246152

RESUMEN

Synchytrium endobioticum is an obligate biotrophic fungus of division Chytridiomycota. It causes potato wart disease, has a worldwide quarantine status and is included on the Health and Human Services and United States Department of Agriculture Select Agent list. S. endobioticum isolates are grouped in pathotypes based on their ability to evade host resistance in a set of differential potato varieties. Thus far, 39 pathotypes are reported. A single dominant gene (Sen1) governs pathotype 1 (D1) resistance and we anticipated that the underlying molecular model would involve a pathogen effector (AvrSen1) that is recognized by the host. The S. endobioticum-specific secretome of 14 isolates representing six different pathotypes was screened for effectors specifically present in pathotype 1 (D1) isolates but absent in others. We identified a single AvrSen1 candidate. Expression of this candidate in potato Sen1 plants showed a specific hypersensitive response (HR), which cosegregated with the Sen1 resistance in potato populations. No HR was obtained with truncated genes found in pathotypes that evaded recognition by Sen1. These findings established that our candidate gene was indeed Avrsen1. The S. endobioticum AvrSen1 is a single-copy gene and encodes a 376-amino-acid protein without predicted function or functional domains, and is the first effector gene identified in Chytridiomycota, an extremely diverse yet underrepresented basal lineage of fungi.


Asunto(s)
Quitridiomicetos , Genes Fúngicos , Solanum tuberosum , Quitridiomicetos/clasificación , Quitridiomicetos/genética , Quitridiomicetos/inmunología , Genes Fúngicos/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...