Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 983686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827742

RESUMEN

Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.


Asunto(s)
Haploinsuficiencia , Inflamación , Lipopolisacáridos , Macrófagos , Animales , Ratones , Inflamación/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Citocinas/metabolismo , Poli I-C , Ratones Endogámicos C57BL , Ratones Noqueados , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38619794

RESUMEN

Several inflammatory diseases are characterized by a disruption in the equilibrium between the host and its microbiome. Due to the increase in resistance, the use of antibiotics for the widespread, nonspecific killing of microorganisms is at risk. Pro-microbial approaches focused on stimulating or introducing beneficial species antagonistic toward pathobionts may be a viable alternative for restoring the host-microbiome equilibrium. Unfortunately, not all potential probiotic or synbiotic species and even subspecies (to strain level) are equally effective for the designated pathology, leading to conflicting accounts of their efficacy. To assess the extent of these species- and strain-specific effects, 13 probiotic candidates were evaluated for their probiotic and synbiotic potential with glycerol on in vitro oral biofilms, dissemination from biofilms to keratinocytes, and anti-inflammatory activity. Species- and strain-specific effects and efficacies were observed in how they functioned as probiotics or synbiotics by influencing oral pathobionts and commensals within biofilms and affected the dissemination of pathobionts to keratinocytes, ranging from ineffective strains to strains that reduced pathobionts by 3 + log. In addition, a minority of the candidates exhibited the ability to mitigate the inflammatory response of LPS-stimulated monocytes. For a comprehensive assessment of probiotic therapy for oral health, a judicious selection of fully characterized probiotic strains that are specifically tailored to the designated pathology is required. This approach aims to challenge the prevailing perception of probiotics, shifting the focus away from "form over function." Rather than using unproven, hypothetical probiotic strains from known genera or species, one should choose strains that are actually functional in resolving the desired pathology before labelling them probiotics.

3.
Front Immunol ; 15: 1378591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686377

RESUMEN

Introduction: Pulmonary diseases represent a significant burden to patients and the healthcare system and are one of the leading causes of mortality worldwide. Particularly, the COVID-19 pandemic has had a profound global impact, affecting public health, economies, and daily life. While the peak of the crisis has subsided, the global number of reported COVID-19 cases remains significantly high, according to medical agencies around the world. Furthermore, despite the success of vaccines in reducing the number of deaths caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there remains a gap in the treatment of the disease, especially in addressing uncontrolled inflammation. The massive recruitment of leukocytes to lung tissue and alveoli is a hallmark factor in COVID-19, being essential for effectively responding to the pulmonary insult but also linked to inflammation and lung damage. In this context, mice models are a crucial tool, offering valuable insights into both the pathogenesis of the disease and potential therapeutic approaches. Methods: Here, we investigated the anti-inflammatory effect of the glycosaminoglycan (GAG)-binding chemokine fragment CXCL9(74-103), a molecule that potentially decreases neutrophil transmigration by competing with chemokines for GAG-binding sites, in two models of pneumonia caused by coronavirus infection. Results: In a murine model of betacoronavirus MHV-3 infection, the treatment with CXCL9(74-103) decreased the accumulation of total leukocytes, mainly neutrophils, to the alveolar space and improved several parameters of lung dysfunction 3 days after infection. Additionally, this treatment also reduced the lung damage. In the SARS-CoV-2 model in K18-hACE2-mice, CXCL9(74-103) significantly improved the clinical manifestations of the disease, reducing pulmonary damage and decreasing viral titers in the lungs. Discussion: These findings indicate that CXCL9(74-103) resulted in highly favorable outcomes in controlling pneumonia caused by coronavirus, as it effectively diminishes the clinical consequences of the infections and reduces both local and systemic inflammation.


Asunto(s)
COVID-19 , Quimiocina CXCL9 , Modelos Animales de Enfermedad , Glicosaminoglicanos , Pulmón , SARS-CoV-2 , Animales , Ratones , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicosaminoglicanos/metabolismo , Quimiocina CXCL9/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/inmunología , Pulmón/metabolismo , Inflamación/inmunología , Humanos , Tratamiento Farmacológico de COVID-19 , Ratones Endogámicos C57BL , Femenino
4.
Haematologica ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38426279

RESUMEN

BCR::ABL1 negative myeloproliferative neoplasms (MPNs) form a distinct group of hematologic malignancies characterized by sustained proliferation of cells from multiple myeloid lineages. With a median survival of 16-35 months in patients with high-risk disease, primary myelofibrosis (PMF) is considered the most aggressive entity amongst all BCR::ABL1 MPNs. Additionally, a significant subset of patients evolves into secondary acute myeloid leukemia (AML) which has an even poorer prognosis compared to de novo AML. As the exact mechanisms of disease development and progression remain to be elucidated, current therapeutic approaches fail to prevent disease progression or transformation into secondary AML. As each MPN entity is characterized by sustained activation of various immune cells and raised cytokine concentrations within bone marrow and peripheral blood, MPNs may be considered as typical inflammation-related malignancies. However, the exact role and consequences of increased cytokine concentrations within bone marrow and peripheral blood plasma are currently incompletely established. Upregulated cytokines can stimulate cellular proliferation or contribute to the development of an inflammation-related bone marrow niche resulting in genotoxicity and thereby supporting mutagenesis. The neutrophil chemoattractant CXCL8 is of specific interest as its concentration is increased within peripheral blood and bone marrow plasma of patients with PMF. Increased concentration of CXCL8 negatively correlates with overall survival. Furthermore, blockage of the CXCR1/2 axis appears to be able to reduce bone marrow fibrosis and megakaryocyte dysmorphia in murine models. Within this review, we summarize available evidence on the role of the CXCL8-CXCR1/2 axis within the pathogenesis of PMF and discuss potential therapeutic modalities targeting either CXCL8 or its cognate receptors CXCR1/2.

5.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308278

RESUMEN

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Asunto(s)
Quimiocina CXCL10 , Quimiotaxis , Glicosaminoglicanos , Animales , Cricetinae , Humanos , Ratones , Quimiocina CXCL10/metabolismo , Cricetulus , Células Endoteliales/metabolismo , Heparina/metabolismo , Linfocitos T/metabolismo , Glicosaminoglicanos/metabolismo
6.
Lancet Microbe ; 5(3): e247-e260, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280387

RESUMEN

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a severe superinfection with the fungus Aspergillus affecting patients who are critically ill with COVID-19. The pathophysiology and the role of neutrophil extracellular traps (NETs) in this infection are largely unknown. We aimed to characterise the immune profile, with a focus on neutrophils and NET concentrations, of critically ill patients with COVID-19, with or without CAPA. METHODS: We conducted a single-centre, retrospective, observational study in two patient cohorts, both recruited at University Hospitals Leuven, Belgium. We included adults aged 18 years or older who were admitted to the intensive care unit because of COVID-19 between March 31, 2020, and May 18, 2021, and who were included in the previous Contagious trial (NCT04327570). We investigated the immune cellular landscape of CAPA versus COVID-19 only by performing single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid. Bronchoalveolar lavage immune cell fractions were compared between patients with CAPA and patients with COVID-19 only. Additionally, we determined lower respiratory tract NET concentrations using biochemical assays in patients aged 18 years and older who were admitted to the intensive care unit because of severe COVID-19 between March 15, 2020, and Dec 31, 2021, for whom bronchoalveolar lavage was available in the hospital biobank. Bronchoalveolar lavage NET concentrations were compared between patients with CAPA and patients with COVID-19 only and integrated with existing data on immune mediators in bronchoalveolar lavage and 90-day mortality. FINDINGS: We performed scRNA-seq of bronchoalveolar lavage on 43 samples from 39 patients, of whom 36 patients (30 male and six female; 14 with CAPA) were included in downstream analyses. We performed bronchoalveolar lavage NET analyses in 59 patients (46 male and 13 female), of whom 26 had CAPA. By scRNA-seq, patients with CAPA had significantly lower neutrophil fractions than patients with COVID-19 only (16% vs 33%; p=0·0020). The remaining neutrophils in patients with CAPA preferentially followed a hybrid maturation trajectory characterised by expression of genes linked to antigen presentation, with enhanced transcription of antifungal effector pathways. Patients with CAPA also showed depletion of mucosal-associated invariant T cells, reduced T helper 1 and T helper 17 differentiation, and transcriptional defects in specific aspects of antifungal immunity in macrophages and monocytes. We observed increased formation of NETs in patients with CAPA compared with patients with COVID-19 only (DNA complexed with citrullinated histone H3 median 15 898 ng/mL [IQR 4588-86 419] vs 7062 ng/mL [775-14 088]; p=0·042), thereby explaining decreased neutrophil fractions by scRNA-seq. Low bronchoalveolar lavage NET concentrations were associated with increased 90-day mortality in patients with CAPA. INTERPRETATION: Qualitative and quantitative disturbances in monocyte, macrophage, B-cell, and T-cell populations could predispose patients with severe COVID-19 to develop CAPA. Hybrid neutrophils form a specialised response to CAPA, and an adequate neutrophil response to CAPA is a major determinant for survival in these patients. Therefore, measuring bronchoalveolar lavage NETs could have diagnostic and prognostic value in patients with CAPA. Clinicians should be wary of aspergillosis when using immunomodulatory therapy that might inhibit NETosis to treat patients with severe COVID-19. FUNDING: Research Foundation Flanders, KU Leuven, UZ Leuven, VIB, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, la Caixa Foundation, the Flemish Government, and Horizon 2020.


Asunto(s)
COVID-19 , Trampas Extracelulares , Aspergilosis Pulmonar , Adulto , Humanos , Femenino , Masculino , Estudios Retrospectivos , Antifúngicos , Enfermedad Crítica , COVID-19/complicaciones , Sistema Respiratorio , Análisis de Secuencia de ARN
7.
FEBS Lett ; 597(24): 3049-3060, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37994578

RESUMEN

Inflammatory chemokines are often elevated in disease settings, where the largest group of CC-chemokines are the macrophage inflammatory proteins (MIP), which are promiscuous for the receptors CCR1 and CCR5. MIP chemokines, such as CCL3 and CCL5 are processed at the N terminus, which influences signaling in a highly diverse manner. Here, we investigate the signaling capacity of peptides corresponding to truncated N termini. These 3-10-residue peptides displayed weak potency but, surprisingly, retained their signaling on CCR1. In contrast, none of the peptides generated a signal on CCR5, but a CCL3-derived tetrapeptide was a positive modulator boosting the signal of several chemokine variants on CCR5. In conclusion, chemokine N termini can be mimicked to produce small CCR1-selective agonists, as well as CCR5-selective modulators.


Asunto(s)
Quimiocinas , Receptores de Quimiocina , Quimiocina CCL3 , Quimiocina CCL4 , Receptores de Quimiocina/agonistas , Receptores de Quimiocina/metabolismo , Quimiocinas/farmacología , Quimiocinas/metabolismo , Proteínas Inflamatorias de Macrófagos/química , Proteínas Inflamatorias de Macrófagos/metabolismo
8.
Clin Immunol ; 257: 109815, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898413

RESUMEN

We report the fatal case of a 20-year-old woman with refractory adult-onset Still's disease (AOSD) accompanied by fulminant macrophage activation syndrome (MAS) and atypical hemolytic uremic syndrome (aHUS). Anakinra and tocilizumab temporarily controlled AOSD. In 2021, she presented to ICU with generalized tonic-clonic seizure, lymphocytic aseptic meningitis, and acute kidney injury. Despite hemodialysis and methylprednisolone, she developed another seizure, MAS, and disseminated intravascular coagulation (DIC). Following brief control, MAS flares -reflected by increased plasma CXCL9 and CXCL10- re-emerged and were controlled through dexamethasone, etoposide, cyclosporin and tofacitinib. No mutations were detected in haemophagocytic lymphohistiocytosis (HLH)-associated genes, nor in genes associated with periodic fever syndromes. Post-mortem genetic testing revealed loss-of-function biallelic deletions in complement factor H-related proteins (CFHR) genes, predisposing aHUS. This case underscores the importance of prompt genetic assessment of complement-encoding alleles, in addition to HLH-related genes, in patients with severe AOSD with recurrent MAS and features of thrombotic microangiopathy (TMA).


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Enfermedad de Still del Adulto , Adulto , Femenino , Humanos , Adulto Joven , Síndrome de Activación Macrofágica/genética , Enfermedad de Still del Adulto/complicaciones , Enfermedad de Still del Adulto/genética , Síndrome Hemolítico Urémico Atípico/genética , Linfohistiocitosis Hemofagocítica/genética , Ciclosporina/uso terapéutico
9.
J Allergy Clin Immunol Pract ; 11(12): 3732-3741.e10, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37543086

RESUMEN

BACKGROUND: Exposure to insects used in pet food, scientific research, or live fish bait can cause an occupational allergy. The recent shift toward enhanced insect production for human consumption and animal feed will likely expose more employees. OBJECTIVE: To investigate sensitization and symptoms in employees exposed to edible insects in Flanders. METHODS: Fifteen insect-exposed employees were recruited and sensitization was explored by skin prick test, basophil activation test, and immunoblotting. Lung function, FeNO, histamine provocation, and sputum induction were studied. Airborne dust sampling was performed and proteins were studied by silver stain and immunoblotting. RESULTS: Sixty percent of employees self-reported upper respiratory tract symptoms related to insect exposure. Ten employees (71.4%) had a positive histamine provocation test concentration causing a 20% drop in FEV1 less than 8 mg/mL and four (26.7%) had FeNO levels above 25 ppb. Four employees (30.7%) had a positive skin prick test for at least one insect, and seven (58.3%) had a positive basophil activation test. In eight participants with insect sensitization, four (50%) had co-occurring house dust mite sensitization. Two participants had strong IgE binding to a 50-kDa migratory locust allergen, one to a 25-kDa mealworm allergen, and one to mealworm α-amylase. In one center, facility adjustment resulted in a substantial decrease in the inhalable dust fraction. CONCLUSIONS: Insect exposure leads to high levels of sensitization among employees. Most employees reported symptoms of the upper respiratory system, and two-thirds of employees had bronchial hyperreactivity. Prevention and health surveillance will be important in the developing insect-rearing industry.


Asunto(s)
Insectos Comestibles , Hipersensibilidad , Animales , Humanos , Histamina , Hipersensibilidad/epidemiología , Hipersensibilidad/diagnóstico , Alérgenos , Polvo , Pruebas Cutáneas
10.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505242

RESUMEN

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Asunto(s)
COVID-19 , Humanos , Proteolisis , Quimiocina CXCL12/metabolismo , Péptido Hidrolasas , Pulmón/metabolismo , Receptores CXCR4 , Procesamiento Proteico-Postraduccional
11.
J Allergy Clin Immunol Pract ; 11(10): 3146-3160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37380070

RESUMEN

BACKGROUND: Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear. OBJECTIVES: To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients. METHODS: PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15). RESULTS: Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum. CONCLUSION: PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.


Asunto(s)
COVID-19 , Hipersensibilidad , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Inmunoglobulina E , Polietilenglicoles , Polisorbatos , SARS-CoV-2
12.
Nat Rev Rheumatol ; 19(6): 363-377, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37161083

RESUMEN

Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Humanos , Medicina de Precisión , Metaloproteinasas de la Matriz , Inhibidores Tisulares de Metaloproteinasas/fisiología , Matriz Extracelular
13.
Med Res Rev ; 43(5): 1537-1606, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37036061

RESUMEN

Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.


Asunto(s)
Antiinfecciosos , Neoplasias , Humanos , Neutrófilos , Inmunidad Innata , Inmunidad Adaptativa , Inflamación
14.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104043

RESUMEN

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Ratones , COVID-19/genética , COVID-19/patología , Trampas Extracelulares/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Pulmón/patología , Complemento C5a/genética , Complemento C5a/metabolismo
16.
Cell Mol Life Sci ; 80(3): 78, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862204

RESUMEN

Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.


Asunto(s)
Artritis , Enfermedades Autoinmunes , Humanos , Linfocitos T CD8-positivos , Ligandos , Receptores CXCR3/genética , Interferones/farmacología
17.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982340

RESUMEN

Defensins have long been considered as merely antimicrobial peptides. Throughout the years, more immune-related functions have been discovered for both the α-defensin and ß-defensin subfamily. This review provides insights into the role of defensins in tumor immunity. Since defensins are present and differentially expressed in certain cancer types, researchers started to unravel their role in the tumor microenvironment. The human neutrophil peptides have been demonstrated to be directly oncolytic by permealizing the cell membrane. Further, defensins can inflict DNA damage and induce apoptosis of tumor cells. In the tumor microenvironment, defensins can act as chemoattractants for subsets of immune cells, such as T cells, immature dendritic cells, monocytes and mast cells. Additionally, by activating the targeted leukocytes, defensins generate pro-inflammatory signals. Moreover, immuno-adjuvant effects have been reported in a variety of models. Therefore, the action of defensins reaches beyond their direct antimicrobial effect, i.e., the lysis of microbes invading the mucosal surfaces. By causing an increase in pro-inflammatory signaling events, cell lysis (generating antigens) and attraction and activation of antigen presenting cells, defensins could have a relevant role in activating the adaptive immune system and generating anti-tumor immunity, and could thus contribute to the success of immune therapy.


Asunto(s)
alfa-Defensinas , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Linfocitos T/metabolismo , alfa-Defensinas/metabolismo , Monocitos/metabolismo , Biología , Defensinas/metabolismo
18.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902230

RESUMEN

Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR-/-) to characterize the disease. MAYV inoculations in the hind paws of IFNAR-/- mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Animales , Ratones , Infecciones por Alphavirus/patología , Inflamación , Sincrotrones , Microtomografía por Rayos X
19.
Cell Mol Life Sci ; 80(2): 55, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729338

RESUMEN

Chemokine ligands and receptors regulate the directional migration of leukocytes. Post-translational modifications of chemokine receptors including O-glycosylation and tyrosine sulfation have been reported to regulate ligand binding and resulting signaling. Through in silico analyses, we determined potential conserved O-glycosylation and sulfation sites on human and murine CC chemokine receptors. Glyco-engineered CHO cell lines were used to measure the impact of O-glycosylation on CC chemokine receptor CCR5, while mutation of tyrosine residues and treatment with sodium chlorate were performed to determine the effect of tyrosine sulfation. Changing the glycosylation or tyrosine sulfation on CCR5 reduced the receptor signaling by the more positively charged CCL5 and CCL8 more profoundly compared to the less charged CCL3. The loss of negatively charged sialic acids resulted only in a minor effect on CCL3-induced signal transduction. The enzymes GalNAc-T1 and GalNAc-T11 were shown to be involved in the process of chemokine receptor O-glycosylation. These results indicate that O-glycosylation and tyrosine sulfation are involved in the fine-tuning and recognition of chemokine interactions with CCR5 and the resulting signaling.


Asunto(s)
Quimiocinas , Transducción de Señal , Cricetinae , Animales , Humanos , Ratones , Quimiocinas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores CCR5/genética , Células CHO , Tirosina/metabolismo , Unión Proteica
20.
Cell Mol Immunol ; 20(3): 217-251, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36725964

RESUMEN

Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.


Asunto(s)
Quimiocina CXCL12 , Células Endoteliales , Interleucina-8 , Humanos , Quimiocina CXCL12/farmacología , Quimiocina CXCL12/metabolismo , Células Endoteliales/metabolismo , Glicosaminoglicanos , Interleucina-8/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Quimiocina/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA