Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38863419

RESUMEN

BACKGROUND: There is conflicting evidence regarding the presence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance training with blood flow restriction (LL+BFR), which may be related to the protocol implemented or exercise volume. Therefore, the purpose of this investigation was to examine the effects of a 75 repetition (BFR-75) (1×30, 3×15) and four sets to volitional failure (BFR-4x) protocols on indices of EIMD among untrained men. METHODS: Twelve males with no history of lower-body resistance training during the previous six months volunteered for this investigation. One leg was randomly assigned to BFR-75, and the other to BFR-4x. Participants performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength with BFR. Indices of EIMD (limb circumference, perceived muscle soreness, pain pressure threshold [PPT], passive range of motion, and maximal strength [MVIC]) were recorded before exercise and 0, 24, 48, 72, and 96-hours post-exercise for each protocol. RESULTS: There were no significant changes (P>0.05) in limb circumference, PPT, passive range of motion, or MVIC. For both BFR-75 and BFR-4x, perceived muscle soreness increased (P<0.001) similarly 24- (2.5±1.7 AU) and 48-hours (1.9±1.7 AU) post-exercise. CONCLUSIONS: There was an increase in muscle soreness 24-48 hours post-exercise for both conditions, which may be due to metabolic stress, but this did not affect the force-generating capacity of the muscle (MVIC), suggesting minimal EIMD. The conflicting evidence of EIMD following LL+BFR may be related to differences in restriction time or overall exercise time.

2.
J Musculoskelet Neuronal Interact ; 24(1): 38-46, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427367

RESUMEN

BFR) applied during sprint interval training (SIT) on performance and neuromuscular function. METHODS: Fifteen men completed a randomized bout of SIT with CBFR, IBFR, and without BFR (No-BFR), consisting of 2, 30-s maximal sprints on a cycle ergometer with a resistance of 7.5% of body mass. Concentric peak torque (CPT), maximal voluntary isometric contraction (MVIC) torque, and muscle thickness (MT) were measured before and after SIT, including surface electromyography (sEMG) recorded during the strength assessments. Peak and mean revolutions per minute (RPM) were measured during SIT and power output was examined relative to physical working capacity at the fatigue threshold (PWCFT). RESULTS: CPT and MVIC torque decreased from pre-SIT (220.3±47.6 Nm and 355.1±72.5 Nm, respectively) to post-SIT (147.9±27.7 Nm and 252.2±45.5 Nm, respectively, all P<0.05), while MT increased (1.77±0.31 cm to 1.96±0.30 cm). sEMG mean power frequency decreased during CPT (-12.8±10.5%) and MVIC (-8.7±10.2%) muscle actions. %PWCFT was greater during No-BFR (414.2±121.9%) than CBFR (375.9±121.9%). CONCLUSION: SIT with or without BFR induced comparable alterations in neuromuscular fatigue and sprint performance across all conditions, without affecting neuromuscular function.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético , Humanos , Masculino , Electromiografía , Contracción Isométrica/fisiología , Fatiga Muscular , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Torque
3.
J Strength Cond Res ; 37(10): e546-e554, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639655

RESUMEN

ABSTRACT: Wizenberg, AM, Gonzalez-Rojas, D, Rivera, PM, Proppe, CE, Laurel, KP, Stout, JR, Fukuda, DH, Billaut, F, Keller, JL, and Hill, EC. Acute effects of continuous and intermittent blood flow restriction on sprint interval performance and muscle oxygen responses. J Strength Cond Res 37(10): e546-e554, 2023-This investigation aimed to examine the acute effects of continuous and intermittent blood flow restriction (CBFR and IBFR, respectively) during sprint interval training (SIT) on muscle oxygenation, sprint performance, and ratings of perceived exertion (RPE). Fifteen men (22.6 ± 2.4 years; 176 ± 6.3 cm; 80.0 ± 12.6 kg) completed in random order a SIT session with CBFR, IBFR (applied during rest), and no blood flow restriction (NoBFR). Each SIT session consisted of two 30-second all-out sprint tests separated by 2 minutes. Peak power (PP), total work (TW), sprint decrement score (S dec ), RPE, and muscle oxygenation were measured during each sprint. A p value ≤0.05 was considered statistically significant. PP decreased to a greater extent from sprint 1 to sprint 2 during CBFR (25.5 ± 11.9%) and IBFR (23.4 ± 9.3%) compared with NoBFR (13.4 ± 8.6%). TW was reduced similarly (17,835.6 ± 966.2 to 12,687.2 ± 675.2 J) from sprint 1 to sprint 2 for all 3 conditions, but TW was lower (collapsed across time) for CBFR (14,320.7 ± 769.1 J) than IBFR (15,548.0 ± 840.5 J) and NoBFR (15,915.4 ± 771.5 J). There were no differences in S dec (84.3 ± 1.7%, 86.1 ± 1.5%, and 87.2 ± 1.1% for CBFR, IBFR, and NoBFR, respectively) or RPE, which increased from sprint 1 (8.5 ± 0.3) to sprint 2 (9.7 ± 0.1). Collective muscle oxygenation responses increased across time and were similar among conditions, whereas increases in deoxy[heme] and total[heme] were greatest for CBFR. Applying BFR during SIT induced greater decrements in PP, and CBFR resulted in greater decrements in work across repeated sprints. The larger increases in deoxy[heme] and total[heme] for CBFR suggested it may induce greater metabolite accumulation than IBFR and NoBFR when combined with SIT.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Músculos , Humanos , Masculino , Hemo , Oxígeno , Descanso , Adulto Joven
4.
Int J Exerc Sci ; 16(1): 293-303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113263

RESUMEN

Applying blood flow restriction (BFR) during resistance exercise is a potent stimulus of muscular adaption, but there is little direct comparison of its effect on neuromuscular function. The purpose of this investigation was to compare surface electromyography amplitude and frequency responses during a 75 (1 × 30, 3 × 15) repetition bout (BFR-75) of BFR to 4 sets to failure (BFR-F). Twelve women (mean ± SD age = 22 ± 4 years; body mass = 72 ± 14.4 kg; height = 162.1 ± 4.0 cm) volunteered for the investigation. One leg was randomly assigned to complete BFR-75 and the other to BFR-F. Each leg performed isokinetic, unilateral, concentric-eccentric, leg extension at 30% of maximal strength while surface electromyographic (sEMG) data was recorded. More repetitions (p = 0.006) were completed during set 2 for BFR-F (21.2 ± 7.4) than BFR-75 (14.7 ± 1.2), but there were no other between condition differences for set 1 (29.8 ± 0.9 vs 28.9 ± 10.1), set 3 (14.4 ± 1.4 vs 17.1 ± 6.9), or set 4 (14.8 ± 0.9 vs 16.3 ± 7.0). Collapsed across condition, normalized sEMG amplitude increased (p = 0.014, 132.66 ± 14.03% to 208.21 ± 24.82%) across the first three sets of exercise then plateaued, while normalized sEMG frequency decreased (p = 0.342, 103.07 ± 3.89% to 83.73 ± 4.47%) across the first two sets then plateaued. The present findings indicated that BFR-75 and BFR-F elicited similar acute neuromuscular fatigue responses. The plateau in amplitude and frequency suggested that maximal motor unit excitation and metabolic buildup may be maximized after two to three sets of BFR-75 and BFR-F.

5.
Eur J Sport Sci ; 23(10): 1993-2001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37032512

RESUMEN

ABSTRACTThere is conflicting evidence regarding the prevalence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance exercise with blood flow restriction (LL + BFR) that may be related to exercise protocols. The purpose of this investigation was to examine the effects of 75-repetition (BFR-75) (1 × 30, 3 × 15) and 4 sets to failure (BFR-4x) protocols on indices of EIMD among untrained women. Thirteen women completed this investigation. One leg was randomly assigned to BFR-75 and the other to BFR-4x. Each leg performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength. Indices of EIMD (muscle soreness, range of motion [ROM], limb circumference, pain pressure threshold [PPT], and maximal voluntary isometric contraction [MVIC]) were recorded before exercise, 0-, 24-, 48-, 72-, and 96-hours post-exercise. There were no changes for ROM, circumference, or PPT. Muscle soreness increased similarly in both conditions 0-, 24-, and 48-hours post-exercise and MVIC increased 24-, 48-, 72-, and 96-hours post-exercise. These findings suggested BFR-75 and BFR-4x were not associated with EIMD and elicited similar physiological responses. The increases in muscle soreness may be due to metabolic stress associated with LL + BFR protocols apart from EIMD.


HighlightsThere was no evidence of significant exercise-induced muscle damage following low-load resistance exercise with blood flow restriction completed failure and non-failure.Muscle function was not impaired 24-96 h post-exercise for either protocol.Low-load resistance exercise with blood flow restriction using a 75-repetition and 4 sets to volitional failure protocol resulted in similar physiological responses to exercise.There may be higher levels of metabolic stress which may increase muscle soreness following low-load resistance exercise with blood flow restriction.


Asunto(s)
Mialgia , Entrenamiento de Fuerza , Humanos , Femenino , Terapia de Restricción del Flujo Sanguíneo , Músculo Esquelético , Contracción Isométrica , Pierna , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza/métodos
6.
Eur J Sport Sci ; 23(8): 1629-1637, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36825621

RESUMEN

The purpose of this investigation was to examine neuromuscular function, muscle fatigue, rating of perceived exertion (RPE), and muscle swelling between isokinetic and isotonic leg extensions with blood flow restriction (BFR). Fourteen (21 ± 2years; 160cm ± 3.8; 61kg ± 9.1) trained women performed 75 (1 × 30,3 × 15) submaximal (30% of maximal strength), unilateral, isokinetic and isotonic leg extensions with BFR (60% of total arterial occlusion pressure). Before and after exercise, subjects performed maximal voluntary isometric contractions (MVIC) and muscle thickness (MT) was assessed with ultrasound. RPE was recorded across all sets and surface electromyography (EMG) was assessed during the MVIC muscle actions. Separate repeated measures ANOVAs were used to examine MVIC, MT, RPE and neuromuscular function. There were greater reductions in MVIC torque and EMG mean power frequency following isotonic (46.2 ± 17.1%; 16.4 ± 7.9%) than isokinetic (17.9 ± 10.9%;6.5 ± 6.3%). RPE was also higher during isotonic (7.5 ± 2.2), than isokinetic (5.7 ± 1.9). There were no differences in EMG amplitude or MT increases (20 ± 2.1%) between conditions. Isotonic BFR elicited greater fatigue-induced decreases in muscular strength and greater RPE than isokinetic BFR, but similar MT and muscle excitation responses for both conditions. Therefore, both isokinetic and isotonic may induce similar acute physiological responses, but isotonic BFR was associated with greater muscle fatigue and perceived effort.HighlightsExercise modality affects the fatigue and perceptual responses when applying blood flow restriction.Despite greater utility, isotonic blood flow restriction was associated greater fatigue and perceived effort.Isotonic and isokinetic blood flow restriction elicited comparable neural changes.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Humanos , Femenino , Músculo Esquelético/fisiología , Fatiga Muscular/fisiología , Electromiografía , Hemodinámica , Ejercicio Físico/fisiología , Contracción Isométrica/fisiología , Flujo Sanguíneo Regional/fisiología , Torque
7.
Med Sci Sports Exerc ; 55(5): 920-931, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729632

RESUMEN

PURPOSE: The purpose of this study was to examine the physiological responses resulting from an acute blood flow restriction resistance exercise bout with two different cuff pressures in young, healthy men and women. METHODS: Thirty adults (18-30 yr) completed a bilateral leg extension blood flow restriction bout consisting of four sets (30-15-15-15 repetitions), with cuffs applied at pressures corresponding to 40% and 60% of the minimum arterial occlusion pressure (AOP) needed to completely collapse the femoral arteries. During each of these conditions (40% and 60% AOP), physiological measures of near-infrared spectroscopy (NIRS) and EMG amplitude (EMG AMP) were collected from the dominant or nondominant vastus lateralis. After each set, ratings of perceived exertion (RPE) were collected, whereas only at baseline and at the end of the bout, mean arterial pressure (MAP) was assessed. Separate mixed-factorial ANOVA models were used to examine mean differences in the change in EMG AMP and NIRS parameters during each set. The absolute RPE and MAP values were also examined with separate ANOVAs. A P value ≤0.05 was considered statistically significant. RESULTS: Regardless of sex or cuff pressure, the change in EMG AMP was lower in set 1 (14.8%) compared with the remaining sets (22.6%-27.0%). The 40% AOP condition elicited the greatest changes in oxy[heme] and deoxy[heme], while also providing lower RPEs. For MAP, there was an effect for time such that MAP increased from preexercise (87.5 ± 4.3 mm Hg) to postexercise (104.5 ± 4.1 mm Hg). CONCLUSIONS: The major findings suggested that the 40% AOP condition permitted the greatest amount of recovery during the interset rest. In addition, there did not seem to be any meaningful sex-related difference in this sample of young healthy adults.


Asunto(s)
Entrenamiento de Fuerza , Masculino , Humanos , Femenino , Adulto Joven , Entrenamiento de Fuerza/métodos , Hemodinámica , Músculo Cuádriceps , Arteria Femoral/fisiología , Hemo , Flujo Sanguíneo Regional/fisiología , Músculo Esquelético/fisiología , Presión Sanguínea/fisiología
8.
High Alt Med Biol ; 23(1): 18-25, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936812

RESUMEN

Rivera, Paola M., Chris E. Proppe, Esther Beltran, and Ethan C. Hill. Acute effects of local ischemic hypoxia and systemic hypoxemia on neuromuscular and cognitive function. High Alt Med Biol. 23:18-25, 2022. Background: The application of blood flow restriction (BFR) induces local ischemic hypoxia within the muscle(s) distal to the restriction device. Systemic hypoxemia via oxygen or barometric pressure manipulation achieves whole-body hypoxia and thus may be a more potent exercise adjunct than BFR. Therefore, the purpose of this study was to examine the acute effects of local ischemic hypoxia versus systemic hypoxemia on maximal voluntary isometric contraction (MVIC) torque, electromyographic amplitude (EMG AMP), EMG mean power frequency (MPF), and cognition. Materials and Methods: Twelve recreationally trained women (mean age ± standard deviation = 21 ± 1.6 years) performed 75 submaximal (1 × 30, 3 × 15) unilateral leg extension muscle actions under normoxia, local ischemic hypoxia, and systemic hypoxemia. Before and immediately after the 75 repetitions, MVIC muscle actions were performed, and surface EMG was simultaneously assessed from the vastus lateralis. Cognitive function was assessed immediately after each exercise using the Automated Neuropsychological Assessment Metrics (ANAM). Separate repeated-measures analyses of variance (ANOVAs) were performed to examine changes in MVIC, reaction time, EMG AMP, and EMG MPF responses during the MVIC muscle actions. Results: There were no significant (p = 0.21-0.953) Condition × Time interactions for MVIC, EMG AMP, or EMG MPF but a significant (p < 0.001-0.005) main effect for the Time collapsed across Condition for MVIC torque (pretest 238.8 ± 19.5, posttest 212.7 ± 20.1 Nm) and EMG MPF (88.5% ± 1.4% of pretest). There were no significant (p = 0.503) differences in reaction time among Conditions. Conclusions: The findings of the present study suggest that all three conditions elicited comparable acute changes in performance as assessed by MVIC torque that were associated with no changes in muscle activation but decrease in action potential conduction velocity. Therefore, the application of local ischemic hypoxia or systemic hypoxemia during low-load resistance exercise can be used to elicit similar acute physiological responses and not adversely affect cognitive function relative to nonhypoxic conditions.


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Cognición , Electromiografía , Femenino , Humanos , Hipoxia , Contracción Isométrica/fisiología , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA