Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Med Inform Assoc ; 31(1): 35-44, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37604111

RESUMEN

OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.


Asunto(s)
Colaboración de las Masas , Medicina , Humanos , Inteligencia Artificial , Aprendizaje Automático , Algoritmos
2.
JAMA Netw Open ; 4(10): e2124946, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34633425

RESUMEN

Importance: Machine learning could be used to predict the likelihood of diagnosis and severity of illness. Lack of COVID-19 patient data has hindered the data science community in developing models to aid in the response to the pandemic. Objectives: To describe the rapid development and evaluation of clinical algorithms to predict COVID-19 diagnosis and hospitalization using patient data by citizen scientists, provide an unbiased assessment of model performance, and benchmark model performance on subgroups. Design, Setting, and Participants: This diagnostic and prognostic study operated a continuous, crowdsourced challenge using a model-to-data approach to securely enable the use of regularly updated COVID-19 patient data from the University of Washington by participants from May 6 to December 23, 2020. A postchallenge analysis was conducted from December 24, 2020, to April 7, 2021, to assess the generalizability of models on the cumulative data set as well as subgroups stratified by age, sex, race, and time of COVID-19 test. By December 23, 2020, this challenge engaged 482 participants from 90 teams and 7 countries. Main Outcomes and Measures: Machine learning algorithms used patient data and output a score that represented the probability of patients receiving a positive COVID-19 test result or being hospitalized within 21 days after receiving a positive COVID-19 test result. Algorithms were evaluated using area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC) scores. Ensemble models aggregating models from the top challenge teams were developed and evaluated. Results: In the analysis using the cumulative data set, the best performance for COVID-19 diagnosis prediction was an AUROC of 0.776 (95% CI, 0.775-0.777) and an AUPRC of 0.297, and for hospitalization prediction, an AUROC of 0.796 (95% CI, 0.794-0.798) and an AUPRC of 0.188. Analysis on top models submitting to the challenge showed consistently better model performance on the female group than the male group. Among all age groups, the best performance was obtained for the 25- to 49-year age group, and the worst performance was obtained for the group aged 17 years or younger. Conclusions and Relevance: In this diagnostic and prognostic study, models submitted by citizen scientists achieved high performance for the prediction of COVID-19 testing and hospitalization outcomes. Evaluation of challenge models on demographic subgroups and prospective data revealed performance discrepancies, providing insights into the potential bias and limitations in the models.


Asunto(s)
Algoritmos , Benchmarking , COVID-19/diagnóstico , Reglas de Decisión Clínica , Colaboración de las Masas , Hospitalización/estadística & datos numéricos , Aprendizaje Automático , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , COVID-19/epidemiología , COVID-19/terapia , Prueba de COVID-19 , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Pronóstico , Curva ROC , Índice de Severidad de la Enfermedad , Washingtón/epidemiología , Adulto Joven
3.
J Am Med Inform Assoc ; 27(9): 1393-1400, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32638010

RESUMEN

OBJECTIVE: The development of predictive models for clinical application requires the availability of electronic health record (EHR) data, which is complicated by patient privacy concerns. We showcase the "Model to Data" (MTD) approach as a new mechanism to make private clinical data available for the development of predictive models. Under this framework, we eliminate researchers' direct interaction with patient data by delivering containerized models to the EHR data. MATERIALS AND METHODS: We operationalize the MTD framework using the Synapse collaboration platform and an on-premises secure computing environment at the University of Washington hosting EHR data. Containerized mortality prediction models developed by a model developer, were delivered to the University of Washington via Synapse, where the models were trained and evaluated. Model performance metrics were returned to the model developer. RESULTS: The model developer was able to develop 3 mortality prediction models under the MTD framework using simple demographic features (area under the receiver-operating characteristic curve [AUROC], 0.693), demographics and 5 common chronic diseases (AUROC, 0.861), and the 1000 most common features from the EHR's condition/procedure/drug domains (AUROC, 0.921). DISCUSSION: We demonstrate the feasibility of the MTD framework to facilitate the development of predictive models on private EHR data, enabled by common data models and containerization software. We identify challenges that both the model developer and the health system information technology group encountered and propose future efforts to improve implementation. CONCLUSIONS: The MTD framework lowers the barrier of access to EHR data and can accelerate the development and evaluation of clinical prediction models.


Asunto(s)
Simulación por Computador , Registros Electrónicos de Salud , Mortalidad , Pronóstico , Programas Informáticos , Confidencialidad , Data Warehousing , Estudios de Factibilidad , Humanos , Difusión de la Información , Proyectos Piloto , Curva ROC
4.
Artículo en Inglés | MEDLINE | ID: mdl-24303285

RESUMEN

The Biotrust resource provides a web-accessible method to coordinate discovery and request of annotated biospecimens for research. The system is built on an open-source web-application framework, and has a modular approach to defining education on process, study registration and feasibility review, patient identification and cohort forwarding, consent tracking, and biospecimen processing/distribution. The architecture has been designed as a "pass through" system that provides annotated deidentified biospecimens for investigator use in a restricted time window of 4-7 days, and does not maintain biobanking facilities. As a core institutional resource, the system integrates seven vertical service arms, each of which can be accessed independently to support flexible and independent use in translational research. The system will be described in terms of requirements for use, metrics of evaluation, and lessons learned in integrating this into clinical and operational environments.

5.
AMIA Annu Symp Proc ; 2011: 1559-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22195221

RESUMEN

Within the CTSA (Clinical Translational Sciences Awards) program, academic medical centers are tasked with the storage of clinical formulary data within an Integrated Data Repository (IDR) and the subsequent exposure of that data over grid computing environments for hypothesis generation and cohort selection. Formulary data collected over long periods of time across multiple institutions requires normalization of terms before those data sets can be aggregated and compared. This paper sets forth a solution to the challenge of generating derived aggregated normalized views from large, distributed data sets of clinical formulary data intended for re-use within clinical translational research.


Asunto(s)
Procesamiento Automatizado de Datos , Formularios Farmacéuticos como Asunto/normas , RxNorm , Centros Médicos Académicos , Redes de Comunicación de Computadores , Formularios Farmacéuticos como Asunto/clasificación , Programas Informáticos , Integración de Sistemas , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...