Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Neurotoxicology ; 77: 114-126, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31945389

RESUMEN

Aluminum compounds have been observed in various brain regions, and their accumulation has been associated with many neurodegenerative disorders. Neurotoxic effects of aluminum are attributed to reactive oxygen species generation, induction of apoptosis and inflammatory reactions activation. Metalloestrogen activity of aluminum has also been linked to breast cancer progression and metastasis. In this study, taking into account the anti-apoptotic and anti-oxidant activities of estrogens in neuronal cells, which are mediated by estrogen receptors, the possible estrogenic activity of aluminum in SH-SY5Y neuroblastoma cells was studied. Our results showed that aluminum in the form of aluminum chlorohydrate (ACH) exhibited no effect on estrogen receptors transcriptional activation, and differential effect on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) protein levels. ACH caused reduction in ERß protein levels, and increase in its mitochondrial localization. ACH-induced reduction in ERß protein level may be linked, at least in part, to the ACH-induced increase in ERα protein level. This statement is based on our observations showing aluminum-induced reduction in the E2-induced increase in ERα S118 phosphorylation, in MCF-7 and SH-SH5Y cells. Phosphorylation at S118 residue is known to be associated with inhibition of the ubiquitin-induced proteolytic degradation of ERα, leading to its accumulation. Since it is known that ERα negatively regulate ERß expression, increase in ERα, may contribute to reduction in ERß levels and subsequent weakening of its anti-apoptotic and anti-oxidant activity, justified by the observed reduction in procaspase 9, mitochondrial cytochrome c, Bcl-2, Bcl-xL and mitochondrial thioredoxin protein level, as well as by the increase in proapoptotic BAX level, in ACH treated SH-SY5Y cells. In addition, increase in mitochondrial ERß localization may also trigger mitochondrial metabolism, suppress biosynthetic process of gluconeogenesis, as indicated by the observed reduction in the phosphoenolpyruvate carboxykinase protein level, and eventually lead to increase in reactive oxygen species (ROS) generation, known to be implicated in aluminum induced neurodegeneration. This statement was verified by the observed ACH-induced increase in ERß mitochondrial localization, induction of the mitochondrial membrane depolarization and increase in ROS production, in neuronal-like differentiated SH-SY5Y cells.


Asunto(s)
Aluminio/toxicidad , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal/efectos de los fármacos
2.
J Mol Biochem ; 7(1): 1-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148119

RESUMEN

Aluminum salts are widely used as the active antiperspirant in underarm cosmetic. Experimental observations indicate that its long term application may correlate with breast cancer development and progression. This action is proposed to be attributed, among others, to aluminum possible estrogen-like activities. In this study we showed that aluminum, in the form of aluminum chlorohydrate (ACH), caused increase in estrogen receptor alpha (ERα) protein levels, in ERα-positive MCF-7 cells. This effect was accompanied by moderate activation of Estrogen Response Elements (ERE)-driven reporter gene expression and 20%-50% increase in certain estrogen responsive, ERE-independent genes expression. Genes affected were ERα, p53, cyclin D1, and c-fos, crucial regulators of breast cancer development and progression. ACH-induced genes expression was eliminated in the presence of the estrogen antagonist: ICI 182780, in MCF-7 cells, whereas it was not observed in ERα-negative MDA-MB-231 breast cancer cells, indicating aluminum interference with estrogen signaling. Moreover, ACH caused increase in the perinuclear localization of estrogen receptor alpha in MCF-7 breast cancer cells and increase in the mitochondrial Bcl-2 protein, possibly affecting receptors-mediated mitochondrial actions and mitochondrial-dependent apoptosis. ACH-induced perinuclear localization of estrogen receptor beta was also observed in MDA-MB-231. Our findings indicate that aluminum actions on estrogen receptors protein level and subcellular localization possibly affect receptors-mediated actions and thus, aluminum interference with estrogen signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...