Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718757

RESUMEN

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Insulina , Hígado , Transducción de Señal , Humanos , Insulina/metabolismo , Hígado/metabolismo , Hígado Graso/metabolismo , Animales , Metabolismo de los Lípidos , Lipogénesis
2.
Nat Metab ; 5(10): 1706-1725, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735236

RESUMEN

Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Ratones , Lipogénesis/fisiología , Regulación hacia Arriba , Insulina/metabolismo
3.
Acta Pharm Sin B ; 13(6): 2403-2424, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37425065

RESUMEN

The occurrence of obesity has increased across the whole world. Many epidemiological studies have indicated that obesity strongly contributes to the development of cancer, cardiovascular diseases, type 2 diabetes, liver diseases and other disorders, accounting for a heavy burden on the public and on health-care systems every year. Excess energy uptake induces adipocyte hypertrophy, hyperplasia and formation of visceral fat in other non-adipose tissues to evoke cardiovascular disease, liver diseases. Adipose tissue can also secrete adipokines and inflammatory cytokines to affect the local microenvironment, induce insulin resistance, hyperglycemia, and activate associated inflammatory signaling pathways. This further exacerbates the development and progression of obesity-associated diseases. Although some progress in the treatment of obesity has been achieved in preclinical and clinical studies, the progression and pathogenesis of obesity-induced diseases are complex and unclear. We still need to understand their links to better guide the treatment of obesity and associated diseases. In this review, we review the links between obesity and other diseases, with a view to improve the future management and treatment of obesity and its co-morbidities.

4.
Fac Rev ; 12: 9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143925

RESUMEN

Protein synthesis (mRNA translation) plays a crucial role in cell function by shaping the proteome -making all the proteins each cell requires at the right time and in the right quantities and places. Proteins carry out almost every job in the cell. Protein synthesis is also a major component of the cellular economy, using large amounts of metabolic energy and resources, especially amino acids. Accordingly, it is tightly regulated through diverse mechanisms which respond, for example, to nutrients, growth factors, hormones, neurotransmitters and stressful situations.

5.
J Nutr ; 153(5): 1407-1419, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870538

RESUMEN

BACKGROUND: Alzheimer disease (AD) is a neurodegenerative condition defined by the build-up of amyloid plaques in the brain and intraneuronal tangles of the protein tau. Autophagy is a cellular cleaning process involved in the degradation of proteins, including proteins directly responsible for amyloid plaques, but its activity is compromised in AD. The mechanistic target of rapamycin complex (mTORC) 1 inhibits autophagy when activated by amino acids. OBJECTIVES: We hypothesized that reducing amino acid intake by decreasing dietary protein could promote autophagy, which in turn could prevent amyloid plaque deposition in AD mice. METHODS: Homozygote (2-mo-old) and heterozygote (4-mo-old) amyloid precursor protein NL-G-F mice, a model of brain amyloid deposition, were used in this study to test this hypothesis. Male and female mice were fed with isocaloric low-protein, control, or high-protein diets for 4 mo and killed for analysis. Locomotor performance was measured using the inverted screen test, and body composition was measured using EchoMRI. Samples were analyzed using western blotting, enzyme-linked immunosorbent assay, mass spectrometry, and immunohistochemical staining. RESULTS: mTORC1 activity in the cerebral cortex was inversely covaried with protein consumption in both homozygote and heterozygote mice. Low-protein diet improved metabolic parameters and restored locomotor performance only in male homozygous mice. Dietary protein adjustment did not affect amyloid deposition in homozygous mice. However, in the heterozygous amyloid precursor protein NL-G-F mice, amyloid plaque was lower in male mice consuming the low protein compared with that in mice fed with the control diet. CONCLUSIONS: This study showed that reducing protein intake reduces mTORC1 activity and may prevent amyloid accumulation, at least in male mice. Moreover, dietary protein is a tool that can be used to change mTORC1 activity and amyloid deposition in the mouse brain, and the murine brain's response to dietary protein is sex specific.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Placa Amiloide/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Nat Commun ; 13(1): 3706, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764642

RESUMEN

Ribosome biogenesis is an energetically expensive program that is dictated by nutrient availability. Here we report that nutrient deprivation severely impairs precursor ribosomal RNA (pre-rRNA) processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, pre-rRNAs stored under starvation are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient stress leads to perturbed ribosome assembly upon nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine is dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which is in turn dependent on Raf/MEK/ERK signaling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that tumor cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.


Asunto(s)
Glutamina , Neoplasias , Glutamina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Biochem J ; 479(10): 1059-1082, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35604373

RESUMEN

Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Microcefalia , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , eIF-2 Quinasa/metabolismo
9.
Front Pharmacol ; 13: 847483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370715

RESUMEN

Cholestasis is caused by intrahepatic retention of excessive toxic bile acids and ultimately results in hepatic failure. Da-Chai-Hu-Tang (DCHT) has been used in China to treat liver and gallbladder diseases for over 1800 years. Here, we demonstrated that DCHT treatment prevented acute intrahepatic cholestasis with liver injury in response to α-naphthylisothiocyanate (ANIT) not to bile duct ligation (BDL) induced-extrahepatic cholestasis. ANIT (80 mg/kg) increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBiL), total bilirubin (TBiL), and total bile acids (TBA) which was attenuated by DCHT treatment in a dose-dependent manner. DCHT treatment at high dose of 1.875 g/kg restored bile acid homeostasis, as evidenced by the recovery of the transcription of genes implicated in bile acid biosynthesis, uptake and efflux. DCHT treatment (1.875 g/kg) reversed ANIT-evoked disordered glutathione homeostasis (as determined by GSH/GSSG ratio) and increased in the mRNA levels for Il6, Il1b and Tnfa associated with liver inflammation. Using network pharmacology-based approaches, we identified 22 putative targets involved in DCHT treatment for intrahepatic cholestasis not extrahepatic cholestasis. In addition, as evidenced by dual-luciferase reporter assays, compounds from DCHT with high affinity of PPARα increased luciferase levels from a PPARα-driven reporter. PPARα agonist fenofibrate was able to mimic the cytoprotective effect of DCHT on intrahepatic cholestasis, which was abolished by the PPARα antagonist GW6471. KEGG enrichment and western blot analyses showed that signaling axes of JNK/IL-6/NF-κB/STAT3 related to PPARα might be the principal pathway DCHT affects intrahepatic cholestasis. Taken together, the present study provides compelling evidence that DCHT is a promising formula against acute intrahepatic cholestasis with hepatotoxicity which works via PPARα activation.

10.
FASEB J ; 36(2): e22154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032419

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Asunto(s)
Antígenos CD36/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Células Espumosas/metabolismo , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
12.
Exp Mol Med ; 53(9): 1366-1378, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34548615

RESUMEN

PD-L1 is abnormally regulated in many cancers and is critical for immune escape. Fully understanding the regulation of PD-L1 expression is vital for improving the clinical efficacy of relevant anticancer agents. TGF-ß plays an important role in the low reactivity of PD-1/PD-L1 antibody immunotherapy. However, it is not very clear whether and how TGF-ß affects PD-L1 expression. In the present study, we show that TGF-ß upregulates the expression of the transcriptional coactivator MRTF-A in non-small-cell lung cancer cells, which subsequently interacts with NF-κB/p65 rather than SRF to facilitate the binding of NF-κB/p65 to the PDL1 promoter, thereby activating the transcription and expression of PD-L1. This leads to the immune escape of NSCLC cells. This process is dependent on the activation of the TGF-ß signaling pathway. In vivo, inhibition of MRTF-A effectively suppresses the growth of lung tumor syngrafts with enrichment of NK and T cells in tumor tissue. Our study defines a new signaling pathway that regulates the transcription and expression of PD-L1 upon TGF-ß treatment, which may have a significant impact on research into the application of immunotherapy in treating lung cancer.


Asunto(s)
Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Evasión Inmune/genética , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Transactivadores/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina/metabolismo
13.
Cell Rep ; 36(8): 109564, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433065

RESUMEN

Studies investigating whether there is a causative link between the gut microbiota and lifespan have largely been restricted to invertebrates or to mice with a reduced lifespan because of a genetic deficiency. We investigate the effect of early-life antibiotic exposure on otherwise healthy, normal chow-fed, wild-type mice, monitoring these mice for more than 700 days in comparison with untreated control mice. We demonstrate the emergence of two different low-diversity community types, post-antibiotic microbiota (PAM) I and PAM II, following antibiotic exposure. PAM II but not PAM I mice have impaired immunity, increased insulin resistance, and evidence of increased inflammaging in later life as well as a reduced lifespan. Our data suggest that differences in the composition of the gut microbiota following antibiotic exposure differentially affect host health and longevity in later life.


Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Longevidad/inmunología , Animales , Longevidad/efectos de los fármacos , Ratones
14.
Nucleic Acids Res ; 49(18): e105, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255842

RESUMEN

Translation of eukaryotic mRNAs begins with binding of their m7G cap to eIF4E, followed by recruitment of other translation initiation factor proteins. We describe capCLIP, a novel method to comprehensively capture and quantify the eIF4E (eukaryotic initiation factor 4E) 'cap-ome' and apply it to examine the biological consequences of eIF4E-cap binding in distinct cellular contexts. First, we use capCLIP to identify the eIF4E cap-omes in human cells with/without the mTORC1 (mechanistic target of rapamycin, complex 1) inhibitor rapamycin, there being an emerging consensus that rapamycin inhibits translation of TOP (terminal oligopyrimidine) mRNAs by displacing eIF4E from their caps. capCLIP reveals that the representation of TOP mRNAs in the cap-ome is indeed systematically reduced by rapamycin, thus validating our new methodology. capCLIP also refines the requirements for a functional TOP sequence. Second, we apply capCLIP to probe the consequences of phosphorylation of eIF4E. We show eIF4E phosphorylation reduces overall eIF4E-mRNA association and, strikingly, causes preferential dissociation of mRNAs with short 5'-UTRs. capCLIP is a valuable new tool to probe the function of eIF4E and of other cap-binding proteins such as eIF4E2/eIF4E3.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Células HeLa , Humanos , Unión Proteica , Biosíntesis de Proteínas
15.
JBMR Plus ; 5(5): e10486, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977204

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) complex is the major nutrient sensor in mammalian cells that responds to amino acids, energy levels, growth factors, and hormones, such as insulin, to control anabolic and catabolic processes. We have recently shown that suppression of the mTORC1 complex in bone-forming osteoblasts (OBs) improved glucose handling in male mice fed a normal or obesogenic diet. Mechanistically, this occurs, at least in part, by increasing OB insulin sensitivity leading to upregulation of glucose uptake and glycolysis. Given previously reported sex-dependent differences observed upon antagonism of mTORC1 signaling, we investigated the metabolic and skeletal effects of genetic inactivation of preosteoblastic-mTORC1 in female mice. Eight-week-old control diet (CD)-fed Rptor ob -/- mice had a low bone mass with a significant reduction in trabecular bone volume and trabecular number, reduced cortical bone thickness, and increased marrow adiposity. Despite no changes in body composition, CD-fed Rptor ob -/- mice exhibited significant lower fasting insulin and glucose levels and increased insulin sensitivity. Upon high-fat diet (HFD) feeding, Rptor ob -/- mice were resistant to a diet-induced increase in whole-body and total fat mass and protected from the development of diet-induced insulin resistance. Notably, although 12 weeks of HFD increased marrow adiposity, with minimal changes in both trabecular and cortical bone in the female control mice, marrow adiposity was significantly reduced in HFD-fed Rptor ob -/- compared to both HFD-fed control and CD-fed Rptor ob -/- mice. Collectively, our results demonstrate that mTORC1 function in preosteoblasts is crucial for skeletal development and skeletal regulation of glucose homeostasis in both male and female mice. Importantly, loss of mTORC1 function in OBs results in metabolic and physiological adaptations that mirror a caloric restriction phenotype (under CD) and protects against HFD-induced obesity, associated insulin resistance, and marrow adiposity expansion. These results highlight the critical contribution of the skeleton in the regulation of whole-body energy homeostasis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Eur J Med Chem ; 219: 113420, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33892273

RESUMEN

The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Movimiento Celular/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Relación Estructura-Actividad
17.
Neuropharmacology ; 190: 108541, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794244

RESUMEN

Autophagy is a catabolic process that collects and degrades damaged or unwanted cellular materials such as protein aggregates. Defective brain autophagy has been linked to diseases such as Alzheimer's disease. Autophagy is regulated by the protein kinase mTOR (mechanistic target of rapamycin). Although already demonstrated in vitro, it remains contentious whether inhibiting mTOR can enhance autophagy in the brain. To address this, mice were intraperitoneally injected with the mTOR inhibitor AZD2014 for seven days. mTOR complex 1 (mTORC1) activity was decreased in liver and brain. Autophagic activity was increased by AZD2014 in both organs, as measured by immunoblotting for LC3 (microtubule-associated proteins-1A/1B light chain 3B) and measurement of autophagic flux in the cerebral cortex of transgenic mice expressing the EGFP-mRFP-LC3B transgene. mTOR activity was shown to correlate with changes in LC3. Thus, we show it is possible to promote autophagy in the brain using AZD2014, which will be valuable in tackling conditions associated with defective autophagy, especially neurodegeneration.


Asunto(s)
Autofagia/efectos de los fármacos , Benzamidas/farmacología , Corteza Cerebral/efectos de los fármacos , Inhibidores mTOR/farmacología , Morfolinas/farmacología , Pirimidinas/farmacología , Animales , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Hígado/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo
18.
Cell Mol Life Sci ; 78(8): 4035-4052, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33834258

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Mutación Puntual , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Neoplasias/metabolismo , Proteoma/metabolismo , Proteómica , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal
19.
Biochem J ; 478(8): 1547-1569, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33779695

RESUMEN

Cells within solid tumours can become deprived of nutrients; in order to survive, they need to invoke mechanisms to conserve these resources. Using cancer cells in culture in the absence of key nutrients, we have explored the roles of two potential survival mechanisms, autophagy and elongation factor 2 kinase (eEF2K), which, when activated, inhibits the resource-intensive elongation stage of protein synthesis. Both processes are regulated through the nutrient-sensitive AMP-activated protein kinase and mechanistic target of rapamycin complex 1 signalling pathways. We find that disabling both autophagy and eEF2K strongly compromises the survival of nutrient-deprived lung and breast cancer cells, whereas, for example, knocking out eEF2K alone has little effect. Contrary to some earlier reports, we find no evidence that eEF2K regulates autophagy. Unexpectedly, eEF2K does not facilitate survival of prostate cancer PC3 cells. Thus, eEF2K and autophagy enable survival of certain cell-types in a mutually complementary manner. To explore this further, we generated, by selection, cells which were able to survive nutrient starvation even when autophagy and eEF2K were disabled. Proteome profiling using mass spectrometry revealed that these 'resistant' cells showed lower levels of diverse proteins which are required for energy-consuming processes such as protein and fatty acid synthesis, although different clones of 'resistant cells' appear to adapt in dissimilar ways. Our data provide further information of the ways that human cells cope with nutrient limitation and to understanding of the utility of eEF2K as a potential target in oncology.


Asunto(s)
Autofagia/genética , Quinasa del Factor 2 de Elongación/genética , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Glucosa/farmacología , Glutamina/farmacología , Ácido Pirúvico/farmacología , Células A549 , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasa del Factor 2 de Elongación/metabolismo , Metabolismo Energético/genética , Glucosa/deficiencia , Glutamina/deficiencia , Humanos , Macrólidos/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células PC-3 , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
20.
Biotechnol Bioeng ; 118(7): 2422-2434, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33694218

RESUMEN

Monoclonal antibodies (mAbs) are high value agents used for disease therapy ("biologic drugs") or as diagnostic tools which are widely used in the healthcare sector. They are generally manufactured in mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic target of rapamycin complex 1, a protein kinase that drives anabolic processes including protein synthesis and ribosome biogenesis. Here, we show that certain constitutively active mutants of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in the processing of secreted proteins in the endoplasmic reticulum, which expands in response to expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined medium and the production of secreted proteins of high commercial value.


Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...