Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(10): 1536-1548, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783853

RESUMEN

Non-cleaving Cas9 (dCas9) is widely employed to manipulate specific gene loci, often with scant regard for unintended transcriptional effects. We demonstrate here that dCas9 mediates precise RNA polymerase II transcriptional pausing followed by transcription termination and potential alternative polyadenylation. By contrast, alternative splicing is unaffected, likely requiring more sustained alteration to elongation speed. The effect on transcription is orientation specific, with pausing only being induced when dCas9-associated guide RNA anneals to the non-template strand. Targeting the template strand induces minimal effects on transcription elongation and thus provides a neutral approach to recruit dCas9-linked effector domains to specific gene regions. In essence, we evaluate molecular effects of targeting dCas9 to mammalian transcription units. In so doing, we also provide new information on elongation by RNA polymerase II and coupled pre-mRNA processing.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme Alternativo , Mamíferos/genética
2.
Genes Dev ; 37(1-2): 43-44, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061985
4.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688133

RESUMEN

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Cromatina , Exones , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN
5.
Nat Rev Mol Cell Biol ; 23(6): 389-406, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35079163

RESUMEN

Mammalian genomes express two principal gene categories through RNA polymerase II-mediated transcription: protein-coding transcription units and non-coding RNA transcription units. Non-coding RNAs are further divided into relatively abundant structural RNAs, such as small nuclear RNAs, and into a myriad of long non-coding RNAs (lncRNAs) of often low abundance and low stability. Although at least some lncRNA synthesis may reflect transcriptional 'noise', recent studies define unique functions for either specific lncRNAs or for the process of lncRNA synthesis. Notably, the transcription, processing and metabolism of lncRNAs are regulated differently from protein-coding genes. In this Review, we provide insight into the regulation of lncRNA transcription and processing gleaned from the application of recently devised nascent transcriptomics technology. We first compare and contrast different methodologies for studying nascent transcription. We then discuss the molecular mechanisms regulating lncRNA transcription, especially transcription initiation and termination, which emphasize fundamental differences in their expression as compared with protein-coding genes. When perturbed, lncRNA misregulation leads to genomic stress such as transcription-replication conflict and R-loop-mediated DNA damage. We discuss many unresolved but important questions about the synthesis and potential functions of lncRNAs.


Asunto(s)
ARN Largo no Codificante , Animales , Mamíferos/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma/genética
6.
Mol Cell ; 81(9): 1935-1950.e6, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33735606

RESUMEN

Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5' ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5' P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing.


Asunto(s)
Nanotecnología , ARN Polimerasa II/metabolismo , Precursores del ARN/biosíntesis , Empalme del ARN , ARN Mensajero/biosíntesis , RNA-Seq , Transcripción Genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Cinética , Poliadenilación , Caperuzas de ARN , ARN Polimerasa II/genética , Precursores del ARN/genética , ARN Mensajero/genética
7.
Nat Commun ; 12(1): 359, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441544

RESUMEN

Phosphorylated H2A.X is a critical chromatin marker of DNA damage repair (DDR) in higher eukaryotes. However, H2A.X gene expression remains relatively uncharacterised. Replication-dependent (RD) histone genes generate poly(A)- mRNA encoding new histones to package DNA during replication. In contrast, replication-independent (RI) histone genes synthesise poly(A)+ mRNA throughout the cell cycle, translated into histone variants that confer specific epigenetic patterns on chromatin. Remarkably H2AFX, encoding H2A.X, is a hybrid histone gene, generating both poly(A)+ and poly(A)- mRNA isoforms. Here we report that the selective removal of either mRNA isoform reveals different effects in different cell types. In some cells, RD H2A.X poly(A)- mRNA generates sufficient histone for deposition onto DDR associated chromatin. In contrast, cells making predominantly poly(A)+ mRNA require this isoform for de novo H2A.X synthesis, required for efficient DDR. This highlights the importance of differential H2A.X mRNA 3'-end processing in the maintenance of effective DDR.


Asunto(s)
Ciclo Celular/genética , Daño del ADN , Reparación del ADN , Histonas/genética , Poli A/genética , ARN Mensajero/genética , Línea Celular , ADN/genética , ADN/metabolismo , Replicación del ADN/genética , Regulación de la Expresión Génica , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Células Jurkat , Poli A/metabolismo , ARN Mensajero/metabolismo
8.
Mol Cell ; 76(4): 600-616.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31679819

RESUMEN

Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation.


Asunto(s)
Genoma Humano , Regiones Promotoras Genéticas , Estructuras R-Loop , ARN sin Sentido/biosíntesis , ARN Largo no Codificante/biosíntesis , Transcripción Genética , Activación Transcripcional , Células HEK293 , Células HeLa , Humanos , ARN sin Sentido/genética , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Relación Estructura-Actividad
9.
Trends Genet ; 35(8): 553-564, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31213387

RESUMEN

The concept of early termination as an important means of transcriptional control has long been established. Even so, its role in metazoan gene expression is underappreciated. Recent technological advances provide novel insights into premature transcription termination (PTT). This process is frequent, widespread, and can occur close to the transcription start site (TSS), or within the gene body. Stable prematurely terminated transcripts contribute to the transcriptome as instances of alternative polyadenylation (APA). Independently of transcript stability and function, premature termination opposes the formation of full-length transcripts, thereby negatively regulating gene expression, especially of transcriptional regulators. Premature termination can be beneficial or harmful, depending on its context. As a result, multiple factors have evolved to control this process.


Asunto(s)
Regulación de la Expresión Génica/genética , Terminación de la Transcripción Genética , Transcripción Genética , Transcriptoma , Animales , Bacterias/genética , Codón sin Sentido/genética , Exones/genética , Intrones/genética , Plantas/genética , Poliadenilación/genética , ARN Mensajero/genética , ARN no Traducido/genética , Sitio de Iniciación de la Transcripción , Levaduras/genética
10.
Mol Cell ; 74(1): 158-172.e9, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30819644

RESUMEN

The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including mNET-seq, 3' mRNA-seq, chromatin RNA-seq, and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and consequent gene downregulation. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination.


Asunto(s)
ARN Mensajero/biosíntesis , Terminación de la Transcripción Genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión , Regulación del Desarrollo de la Expresión Génica , Células HeLa , Humanos , Mutación , Poliadenilación , Unión Proteica , División del ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Factores de Escisión y Poliadenilación de ARNm/genética
11.
Elife ; 72018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30507380

RESUMEN

Replication-dependent (RD) core histone mRNA produced during S-phase is the only known metazoan protein-coding mRNA presenting a 3' stem-loop instead of the otherwise universal polyA tail. A metallo ß-lactamase (MBL) fold enzyme, cleavage and polyadenylation specificity factor 73 (CPSF73), is proposed to be the sole endonuclease responsible for 3' end processing of both mRNA classes. We report cellular, genetic, biochemical, substrate selectivity, and crystallographic studies providing evidence that an additional endoribonuclease, MBL domain containing protein 1 (MBLAC1), is selective for 3' processing of RD histone pre-mRNA during the S-phase of the cell cycle. Depletion of MBLAC1 in cells significantly affects cell cycle progression thus identifying MBLAC1 as a new type of S-phase-specific cancer target.


Asunto(s)
Endorribonucleasas/química , Histonas/biosíntesis , ARN Mensajero/biosíntesis , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Hidrolasas , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
12.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30449723

RESUMEN

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Asunto(s)
Proliferación Celular , Senescencia Celular , Daño del ADN , Replicación del ADN , ADN de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , Factores de Transcripción/genética , Transcripción Genética , Neoplasias Uterinas/genética
13.
Cell Rep ; 23(7): 2119-2129.e3, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768209

RESUMEN

Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Línea Celular , Perros , Humanos , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Presión Osmótica , Procesamiento Postranscripcional del ARN , Sitio de Iniciación de la Transcripción , Terminación de la Transcripción Genética , Proteínas no Estructurales Virales/metabolismo
14.
Genes Dev ; 31(21): 2175-2185, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196535

RESUMEN

Nuclear gene transcription is coordinated with transcript release from the chromatin template and messenger RNA (mRNA) export to the cytoplasm. Here we describe the role of nuclear-localized kinase WNK1 (with no lysine [K] 1) in the mammalian mRNA export pathway even though it was previously established as a critical regulator of ion homeostasis in the cytoplasm. Our data reveal that WNK1 phosphorylates the termination factor PCF11 on its RNA polymerase II (Pol II) C-terminal domain (CTD)-interacting domain (CID). Furthermore, phosphorylation of the PCF11 CID weakens its interaction with Pol II. We predict that WNK1 and the associated phosphorylation of the PCF11 CID act to promote transcript release from chromatin-associated Pol II. This in turn facilitates mRNA export to the cytoplasm.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , ARN Mensajero/metabolismo , Transcripción Genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Fosforilación , Dominios Proteicos , Interferencia de ARN , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Factores de Escisión y Poliadenilación de ARNm/genética
15.
Mol Cell ; 65(1): 25-38, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017589

RESUMEN

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.


Asunto(s)
Núcleo Celular/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética , Biología Computacional , Bases de Datos Genéticas , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HeLa , Humanos , Fosforilación , Poliadenilación , Interferencia de ARN , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Empalme del ARN , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transfección
16.
Science ; 352(6291): aad9926, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27284201

RESUMEN

Terminating transcription is a highly intricate process for mammalian protein-coding genes. First, the chromatin template slows down transcription at the gene end. Then, the transcript is cleaved at the poly(A) signal to release the messenger RNA. The remaining transcript is selectively unraveled and degraded. This induces critical conformational changes in the heart of the enzyme that trigger termination. Termination can also occur at variable positions along the gene and so prevent aberrant transcript formation or intentionally make different transcripts. These may form multiple messenger RNAs with altered regulatory properties or encode different proteins. Finally, termination can be perturbed to achieve particular cellular needs or blocked in cancer or virally infected cells. In such cases, failure to terminate transcription can spell disaster for the cell.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional/genética , ARN Polimerasa II/metabolismo , Animales , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Extensión de la Cadena Peptídica de Translación/genética , Poli A/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Estrés Fisiológico/genética
17.
Genes Dev ; 29(8): 849-61, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25877920

RESUMEN

In Saccharomyces cerevisiae, short noncoding RNA (ncRNA) generated by RNA polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3, and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is also generally required for NRD-dependent transcription termination through the action of its C-terminal domain (CTD)-interacting domain (CID). Pcf11 localizes downstream from Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore, mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA, and restricted Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar, as both accumulate RNA:DNA hybrids and display Pol II pausing downstream from NRD terminators. We predict a mechanism by which the exchange of Nrd1 and Pcf11 on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ADN Helicasas/genética , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Escisión y Poliadenilación de ARNm/genética
18.
Nat Struct Mol Biol ; 22(4): 319-27, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25730776

RESUMEN

MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.


Asunto(s)
MicroARNs/metabolismo , Modelos Genéticos , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Transcripción Genética , Regulación de la Expresión Génica , Células HeLa , Humanos , MicroARNs/química
19.
Trends Biochem Sci ; 39(7): 319-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928762

RESUMEN

Bidirectional promoters are a common feature of many eukaryotic organisms from yeast to humans. RNA Polymerase II that is recruited to this type of promoter can start transcribing in either direction using alternative DNA strands as the template. Such promiscuous transcription can lead to the synthesis of unwanted transcripts that may have negative effects on gene expression. Recent studies have identified transcription termination and gene looping as critical players in the enforcement of promoter directionality. Interestingly, both mechanisms share key components. Here, we focus on recent findings relating to the transcriptional output of bidirectional promoters.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Terminación de la Transcripción Genética , Animales , Humanos , Regiones Promotoras Genéticas
20.
Nat Struct Mol Biol ; 21(6): 552-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24814348

RESUMEN

Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , ARN Bicatenario/metabolismo , Ribonucleasa III/fisiología , Apoptosis , Núcleo Celular/metabolismo , Cromatina/metabolismo , ARN Helicasas DEAD-box/análisis , ARN Helicasas DEAD-box/química , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Interferones/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Ribonucleasa III/análisis , Ribonucleasa III/química , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...