Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 315(6): H1835-H1850, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30168730

RESUMEN

Functional interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in the arterial wall are necessary for controlling vasoreactivity that underlies vascular resistance and tone. Key signaling pathways converge on the phosphorylation of myosin light chain (p-MLC), the molecular signature of force production in SMCs, through coordinating the relative activities of myosin light chain kinase (MLCK) and myosin phosphatase (MP). Notch signaling in the vessel wall serves critical roles in arterial formation and maturation and has been implicated in arterial vasoregulation. In this report, we hypothesized that Notch signaling through ligands Jagged1 (in SMCs) and delta-like protein-4 (Dll4; in ECs) regulates vasoreactivity via homotypic (SMC-SMC) and heterotypic (EC-SMC) cell interactions. Using ligand induction assays, we demonstrated that Jagged1 selectively induced smooth muscle MLCK gene expression and p-MLC content while inhibiting MP function (i.e., increased Ca2+ sensitization) in a Rho kinase II-dependent manner. Likewise, selective deficiency of smooth muscle Jagged1 in mice resulted in MLCK and p-MLC loss, reduced Ca2+ sensitization, and impaired arterial force generation measured by myography. In contrast, smooth muscle Notch signaling triggered by Dll4 increased expression of MP-targeting subunit 1 (MYPT1; the MP regulatory subunit), whereas arteries from endothelial Dll4-deficient mice featured reduced MYPT1 levels, enhanced force production, and impaired relaxation independent of endothelium-derived nitric oxide signaling. Taken together, this study identifies novel opposing vasoregulatory functions for ligand-specific Notch signaling in the vessel wall, underscoring instructional signaling between ECs and SMCs and suggesting that Notch signals might behave as a "rheostat" in arterial tone control. NEW & NOTEWORTHY The present study unveils novel roles for ligand-specific Notch signaling in arterial function. Smooth muscle Jagged1 and endothelial cell delta-like protein-4 ligands exhibit selective regulation of myosin light chain kinase and myosin phosphatase-targeting subunit 1/myosin phosphatase, respectively, providing a mechanistic link through which Notch signals modulate contractile activities in vascular smooth muscle. These findings may inform vascular derangements observed in human syndromes of Notch signaling deficiency while offering fundamental molecular insights into arterial physiological function.


Asunto(s)
Endotelio Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Receptores Notch/metabolismo , Vasoconstricción , Vasodilatación , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Arterias/fisiología , Proteínas de Unión al Calcio , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/fisiología , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Óxido Nítrico , Transducción de Señal
2.
J Am Heart Assoc ; 7(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858371

RESUMEN

BACKGROUND: Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS: We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1ß), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS: Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Regulación de la Expresión Génica , Isquemia/genética , Extremidad Inferior/irrigación sanguínea , Músculo Liso Vascular/metabolismo , Enfermedades Vasculares Periféricas/genética , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/biosíntesis , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Inmunohistoquímica , Isquemia/metabolismo , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Músculo Liso Vascular/patología , Enfermedades Vasculares Periféricas/metabolismo , Enfermedades Vasculares Periféricas/patología , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
J Biol Chem ; 291(6): 2988-99, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26703474

RESUMEN

Smooth muscle myosin light chain kinase (SM-MLCK) is the key enzyme responsible for phosphorylation of regulatory myosin light chain (MLC20), resulting in actin-myosin cross-bridging and force generation in vascular smooth muscle required for physiological vasoreactivity and blood pressure control. In this study, we investigated the combinatorial role of myocardin/serum response factor (SRF) and Notch signaling in the transcriptional regulation of MLCK gene expression. Promoter reporter analyses in rat A10 smooth muscle cells revealed a bimodal pattern of MLCK promoter activity and gene expression upon stimulation with constitutively active Notch1 in presence of myocardin or by Jagged1 ligand stimulation. An initial Notch1-induced increase in MLCK transcription was followed by loss in promoter sensitivity, which could be restored with further Notch1 dose escalation. Real-time PCR analyses revealed that endogenous levels of Hairy Related Transcription (HRT) factor 2 (HRT2) peaked concurrently with inhibitory concentrations of Notch1. Forced expression of HRT2 demonstrated simultaneous repression of both myocardin- and Notch1-induced MLCK promoter activity. HRT2-mediated repression was further confirmed by HRT2 truncations and siHRT2 treatments that rescued MLCK promoter activity and gene expression. Chromatin immunoprecipitation studies revealed both Jagged1 ligand- and Notch1-enhanced myocardin/SRF complex formation at the promoter CArG element. In contrast, heightened levels of HRT2 concomitantly disrupted myocardin/SRF and Notch transcription complex formation at respective CArG and CSL binding elements. Taken together, SM-MLCK promoter activity appears highly sensitive to the relative levels of Notch1 signaling, HRT2, and myocardin. These findings identify a novel Notch-dependent HRT2 autoregulatory circuit coordinating transcriptional regulation of SM-MLCK.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Miocitos del Músculo Liso/metabolismo , Quinasa de Cadena Ligera de Miosina/biosíntesis , Regiones Promotoras Genéticas , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Miocitos del Músculo Liso/citología , Quinasa de Cadena Ligera de Miosina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratas , Receptor Notch1/genética , Transactivadores/genética , Transactivadores/metabolismo
5.
J Biol Chem ; 289(17): 12016-12028, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24599951

RESUMEN

Regulation of endothelial cell biology by the Notch signaling pathway (Notch) is essential to vascular development, homeostasis, and sprouting angiogenesis. Although Notch determines cell fate and differentiation in a wide variety of cells, the molecular basis of upstream regulation of Notch remains poorly understood. Our group and others have implicated the Krüppel-like factor family of transcription factors as critical regulators of endothelial function. Here, we show that Krüppel-like factor 4 (KLF4) is a central regulator of sprouting angiogenesis via regulating Notch. Using a murine model in which KLF4 is overexpressed exclusively in the endothelium, we found that sustained expression of KLF4 promotes ineffective angiogenesis leading to diminished tumor growth independent of endothelial cell proliferation or cell cycling effects. These tumors feature increased vessel density yet are hypoperfused, leading to tumor hypoxia. Mechanistically, we show that KLF4 differentially regulates expression of Notch receptors, ligands, and target genes. We also demonstrate that KLF4 limits cleavage-mediated activation of Notch1. Finally, we rescue Notch target gene expression and the KLF4 sprouting angiogenesis phenotype by supplementation of DLL4 recombinant protein. Identification of this hitherto undiscovered role of KLF4 implicates this transcription factor as a critical regulator of Notch, tumor angiogenesis, and sprouting angiogenesis.


Asunto(s)
Endotelio Vascular/metabolismo , Factores de Transcripción de Tipo Kruppel/fisiología , Neovascularización Patológica , Receptores Notch/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Cartilla de ADN , Técnicas de Silenciamiento del Gen , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Transgénicos
6.
Dev Biol ; 381(1): 107-20, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23769842

RESUMEN

The circle of Willis (cW) is a major arterial collateral structure interconnecting hemispheric circulation within the brain, and in humans, anatomical variation of the cW is linked to stroke risk. Our prior studies on adult mice deficient in vascular smooth muscle cell (vSMC) Notch signaling revealed altered cerebroarterial maturation and patterning, including an anatomically incompetent cW similar to human variants. However, a developmental dependency on Notch signaling for cW formation in this model remained uncharacterized. Through temporospatial embryonic analyses, we now demonstrate that cW assembly is a pre-natal process highly sensitive to vSMC Notch signals, whose absence results in delayed nascent vascular plexus formation and under-development of the cW including the key anterior communicating artery (AComA) interconnecting anterior forebrain circulation. Mutant embryos additionally feature reduced vSMC coverage, non-uniform calibers and asymmetric branching at bifurcations of the major proximal cerebral arteries. At the cellular level, a notable reduction in vascular endothelial cell proliferation exists in the region of AComA assembly despite the presence of Vegfa. Furthermore, Notch signaling-deficient vSMCs in developing cerebral vessels feature reduced Pdgfrß and Jagged1 levels and impaired proliferation. These collective findings in the embryonic brain support studies in adult animals demonstrating a reliance on intact vSMC Notch signaling for optimal neovascular responses to angiogenic stimuli. Importantly, the new data provide unique insights into the native formation of the cW and underscore a pioneering developmental role for vSMC Notch signaling in regulating temporospatial assembly of the clinically relevant cW.


Asunto(s)
Círculo Arterial Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica , Músculo Liso Vascular/metabolismo , Receptores Notch/metabolismo , Animales , Arterias/embriología , Proliferación Celular , Ligandos , Ratones , Mutación , Neovascularización Patológica , Prosencéfalo/embriología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
J Biol Chem ; 288(16): 11191-202, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23482558

RESUMEN

Notch receptors and ligands mediate heterotypic cell signaling that is required for normal vascular development. Dysregulation of select Notch receptors in mouse vascular smooth muscle (VSM) and in genetic human syndromes causes functional impairment in some regional circulations, the mechanistic basis of which is undefined. In this study, we used a dominant-negative Mastermind-like (DNMAML1) to block signaling through all Notch receptors specifically in VSM to more broadly test a functional role for this pathway in vivo. Mutant DNMAML1-expressing mice exhibited blunted blood pressure responses to vasoconstrictors, and their aortic, femoral, and mesenteric arteries had reduced contractile responses to agonists and depolarization in vitro. The mutant arteries had significant and specific reduction in the expression and activity of myosin light chain kinase (MLCK), a primary regulator of VSM force production. Conversely, activated Notch signaling in VSM cells induced endogenous MLCK transcript levels. We identified MLCK as a direct target of activated Notch receptor as demonstrated by an evolutionarily conserved Notch-responsive element within the MLCK promoter that binds the Notch receptor complex and is required for transcriptional activity. We conclude that Notch signaling through the transcriptional control of key regulatory proteins is required for contractile responses of mature VSM. Genetic or pharmacological manipulation of Notch signaling is a potential strategy for modulating arterial function in human disease.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Musculares/biosíntesis , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Ratones , Ratones Transgénicos , Contracción Muscular/genética , Proteínas Musculares/genética , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Quinasa de Cadena Ligera de Miosina/biosíntesis , Quinasa de Cadena Ligera de Miosina/genética , Proteínas Nucleares/genética , Receptores Notch/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología , Vasoconstricción/genética
8.
Angiogenesis ; 15(3): 409-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22484908

RESUMEN

Hypoxia inducible factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O(2)) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic conditions by using a genetic model in which the required HIF-ß subunit (ARNT, Aryl hydrocarbon Receptor Nuclear Translocator) to HIF transcriptional responses was depleted. Endothelial cells (ECs) and aortic explants were isolated from Arnt ( loxP/loxP ) mice and infected with Adenovirus-Cre/GFP or control-GFP. We observed that moderate levels of 2.5 % O(2) promoted vessel sprouting, growth, and branching in control aortic ring assays while growth from Adenovirus-Cre infected explants was compromised. Primary Adenovirus-Cre infected EC cultures featured adverse migration and tube formation phenotypes. Primary pulmonary or cardiac ARNT-deleted ECs also failed to proliferate and survive in response to 8 or 2.5 % O(2) and hydrogen peroxide treatment. Our data demonstrates that ARNT promotes EC migration and vessel outgrowth and is indispensible for the proliferation and preservation of ECs in response to the physiological environmental cue of hypoxia. Thus, these results demonstrate that ARNT plays a critical intrinsic role in ECs and support an important collaboration between HIF-1 and HIF-2 transcriptional activity in these cells.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/antagonistas & inhibidores , Hipoxia de la Célula , Células Endoteliales/metabolismo , Animales , Aorta/crecimiento & desarrollo , Apoptosis , Secuencia de Bases , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Cartilla de ADN , Células Endoteliales/citología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Técnicas In Vitro , Ratones , Neovascularización Fisiológica , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
J Biol Chem ; 286(15): 13741-53, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21349836

RESUMEN

The evolutionarily conserved Notch signaling pathway is required for normal vascular development and function, and genetic associations link select Notch receptors and ligands to human clinical syndromes featuring blood vessel abnormalities and stroke susceptibility. A previously described mouse model engineered to suppress canonical Notch signaling in vascular smooth muscle cells (vSMCs) revealed surprising anatomical defects in arterial patterning and vessel maturation, suggesting that vSMCs have the functional capacity to influence blood vessel formation in a Notch signaling-dependent manner. In further analyses using this model system, we now show that explanted aortic ring tissue and Matrigel implants from the smooth muscle Notch signaling-deficient mice yield markedly diminished responses to angiogenic stimuli. Furthermore, cultured Notch signaling-deficient primary vSMCs have reduced proliferation and migration capacities and reveal diminished expression of PDGF receptor ß and JAGGED1 ligand. These observations prompted a series of endothelial cell (EC)-vSMC co-culture experiments that revealed a requirement for intact vSMC Notch signals via JAGGED1 for efficient EC Notch1 receptor activation and EC proliferation. Taken together, these studies suggest a heterotypic model wherein Notch signaling in vSMCs provides early instructive cues to neighboring ECs important for optimal postnatal angiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular/fisiología , Proliferación Celular , Células Endoteliales/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ratas , Receptores Notch/genética , Proteínas Serrate-Jagged
10.
J Clin Invest ; 118(2): 515-25, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18188448

RESUMEN

Myocardin (Myocd) is a potent transcriptional coactivator that has been implicated in cardiovascular development and adaptation of the cardiovascular system to hemodynamic stress. To determine the function of myocardin in the developing cardiovascular system, Myocd(F/F)/Wnt1-Cre(+) and Myocd(F/F)/Pax3-Cre(+) mice were generated in which the myocardin gene was selectively ablated in neural crest-derived SMCs populating the cardiac outflow tract and great arteries. Both Myocd(F/F)/Wnt1-Cre(+) and Myocd(F/F)/Pax3-Cre(+) mutant mice survived to birth, but died prior to postnatal day 3 from patent ductus arteriosus (PDA). Neural crest-derived SMCs populating the ductus arteriosus (DA) and great arteries exhibited a cell autonomous block in expression of myocardin-regulated genes encoding SMC-restricted contractile proteins. Moreover, Myocd-deficient vascular SMCs populating the DA exhibited ultrastructural features generally associated with the SMC synthetic, rather than contractile, phenotype. Consistent with these findings, ablation of the Myocd gene in primary aortic SMCs harvested from Myocd conditional mutant mice caused a dramatic decrease in SMC contractile protein expression. Taken together, these data demonstrate that myocardin regulates expression of genes required for the contractile phenotype in neural crest-derived SMCs and provide new insights into the molecular and genetic programs that may underlie PDA.


Asunto(s)
Conducto Arterioso Permeable/genética , Regulación del Desarrollo de la Expresión Génica , Contracción Muscular/genética , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/fisiología , Transactivadores/fisiología , Animales , Ratones , Ratones Transgénicos , Mutación , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Proteínas Nucleares/genética , Eliminación de Secuencia , Transactivadores/genética
11.
Proc Natl Acad Sci U S A ; 104(41): 16275-80, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17909179

RESUMEN

Stroke is the third leading cause of death and a significant contributor of morbidity in the United States. In humans, suboptimal cerebral collateral circulation within the circle of Willis (CW) predisposes to ischemia and stroke risk in the setting of occlusive carotid artery disease. Unique genes or developmental pathways responsible for proper CW formation are unknown. Herein we characterize a mouse model lacking Notch signaling in vascular smooth muscle cells (vSMCs), in which the animals are intolerant to reduced cerebral blood flow. Remarkably, unilateral carotid artery ligation results in profound neurological sequelae and death. After carotid ligation, perfusion of the ipsilateral cerebral hemisphere was markedly diminished, suggesting an anastomotic deficiency within the CW. High-resolution microcomputed tomographic (micro-CT) imaging revealed profound defects in cerebrovascular patterning, including interruption of the CW and anatomic deformity of the cerebral arteries. These data identify a vSMC-autonomous function for Notch signaling in patterning and collateral formation within the cerebral arterial circulation. The data further implicate genetic or functional deficiencies in Notch signaling in the pathogenesis of anatomic derangements underlying cerebrovascular accidents.


Asunto(s)
Encéfalo/irrigación sanguínea , Músculo Liso Vascular/fisiología , Receptores Notch/fisiología , Animales , Tipificación del Cuerpo/fisiología , Encéfalo/crecimiento & desarrollo , Arterias Cerebrales/citología , Arterias Cerebrales/crecimiento & desarrollo , Arterias Cerebrales/metabolismo , Círculo Arterial Cerebral/citología , Círculo Arterial Cerebral/crecimiento & desarrollo , Círculo Arterial Cerebral/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/crecimiento & desarrollo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Neovascularización Fisiológica , Receptores Notch/deficiencia , Receptores Notch/genética , Transducción de Señal
12.
J Clin Invest ; 117(2): 353-63, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17273555

RESUMEN

The cardiac outflow tract develops as a result of a complex interplay among several cell types, including cardiac neural crest cells, endothelial cells, and cardiomyocytes. In both humans and mice, mutations in components of the Notch signaling pathway result in congenital heart disease characterized by cardiac outflow tract defects. However, the specific cell types in which Notch functions during cardiovascular development remain to be defined. In addition, in vitro studies have provided conflicting data regarding the ability of Notch to promote or inhibit smooth muscle differentiation, while the physiological role for Notch in smooth muscle formation during development remains unclear. In this study, we generated mice in which Notch signaling was specifically inactivated in derivatives of the neural crest. These mice exhibited cardiovascular anomalies, including aortic arch patterning defects, pulmonary artery stenosis, and ventricular septal defects. We show that Notch plays a critical, cell-autonomous role in the differentiation of cardiac neural crest precursors into smooth muscle cells both in vitro and in vivo, and we identify specific Notch targets in neural crest that are implicated in this process. These results provide a molecular and cellular framework for understanding the role of Notch signaling in the etiology of congenital heart disease.


Asunto(s)
Sistema Cardiovascular/embriología , Músculo Liso/embriología , Cresta Neural/embriología , Receptores Notch/fisiología , Animales , Anomalías Cardiovasculares/etiología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/patología , Diferenciación Celular , Genotipo , Humanos , Técnicas In Vitro , Ratones , Ratones Mutantes , Músculo Liso/citología , Cresta Neural/citología , Fenotipo , Receptores Notch/antagonistas & inhibidores , Receptores Notch/genética , Transducción de Señal
13.
Cancer Res ; 66(15): 7438-44, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16885339

RESUMEN

Signaling through Notch receptors in the skin has been implicated in the differentiation, proliferation, and survival of keratinocytes, as well as in the pathogenesis of basal cell carcinoma (BCC). To determine the composite function of Notch receptor-mediated signaling in the skin and overcome potential redundancies between receptors, conditional transgenic mice were generated that express the pan-Notch inhibitor, dominant-negative Mastermind Like 1 (DNMAML1), to repress all canonical [CBF-1/Suppressor of hairless/LAG-1 (CSL)-dependent] Notch signaling exclusively in the epidermis. Here, we report that DNMAML1 mice display hyperplastic epidermis and spontaneously develop cutaneous squamous cell carcinoma (SCC) as well as dysplastic precursor lesions, actinic keratoses. Mice expressing epidermal DNMAML1 display enhanced accumulation of nuclear beta-catenin and cyclin D1 in suprabasilar keratinocytes and in lesional cells from SCCs, which was also observed in human cutaneous SCC. These results suggest a model wherein CSL-dependent Notch signaling confers protection against cutaneous SCC. The demonstration that inhibition of canonical Notch signaling in mice leads to spontaneous formation of SCC and recapitulates the disease in humans yields fundamental insights into the pathogenesis of SCC and provides a unique in vivo animal model to examine the pathobiology of cutaneous SCC and for evaluating novel therapies.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Receptores Notch/antagonistas & inhibidores , Neoplasias Cutáneas/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Ciclina D1/biosíntesis , Ciclina D1/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Piel/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Regulación hacia Arriba , beta Catenina/metabolismo
14.
J Biol Chem ; 280(10): 8994-9004, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15634680

RESUMEN

Notch signaling is essential for vascular patterning and response of the vasculature to injury and growth factor stimulation. Despite these findings, the molecular basis of Notch signaling in the vasculature is poorly understood. Here we report that activation of Notch signaling mediated through members of the HRT family of basic helix-loop-helix transcription factors represses smooth muscle cell (SMC) differentiation and expression of genes encoding smooth muscle cell contractile markers. Activation of Notch receptors by Jagged1 or forced expression of the constitutively active Notch1 intracellular domain in C3H10T1/2 fibroblasts inhibited myocardin-dependent transcription of SMC-restricted genes and activity of multiple SMC-restricted transcriptional regulatory elements. Consistent with these findings, forced expression of HRT2 inhibited myocardin-induced expression of SMC-restricted genes and activity of SMC-restricted transcriptional regulatory elements. Moreover, forced expression of HRT2 repressed transcription of multiple SMC-restricted transcriptional regulatory elements in A10 SMCs. The repressive function of HRT2 was not mediated via the capacity of HRT2 to bind SMC CArG elements or by disruption of myocardin-SRF protein complexes. Structure-function analyses of HRT2 indicated that repression required the basic DNA binding domain and additional C-terminal sequence. Taken together, these results demonstrate that Notch signaling represses myocardin-dependent SMC transcription. These data are consistent with a model wherein Notch signaling represses SMC differentiation and maintenance of the contractile SMC phenotype.


Asunto(s)
Fibroblastos/fisiología , Músculo Liso Vascular/citología , Proteínas Nucleares/fisiología , Receptores de Superficie Celular/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/fisiología , Clonación Molecular , Cartilla de ADN , Fibroblastos/citología , Regulación de la Expresión Génica , Ratones , Músculo Liso Vascular/fisiología , Proteínas Nucleares/antagonistas & inhibidores , Ratas , Receptor Notch1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transactivadores/antagonistas & inhibidores , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...