Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 11(9)2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540043

RESUMEN

The herpes simplex virus type 1 (HSV-1) UL37 gene encodes for a multifunctional component of the virion tegument, which is necessary for secondary envelopment in the cytoplasm of infected cells, for motility of the viral particle, and for the first steps in the initiation of virus infection. This 120 kDa protein has several known viral interacting partners, including pUL36, gK/pUL20, pUS10, and VP26, and cellular interacting proteins which include TRAF6, RIG-I, and dystonin. These interactions are likely important for the functions of pUL37 at both early and late stages of infection. We employed a genetic approach to determine essential domains and amino acid residues of pUL37 and their associated functions in cellular localization and virion morphogenesis. Using marker-rescue/marker-transfer methods, we generated a library of GFP-tagged pUL37 mutations in the HSV-1 strain KOS genome. Through viral growth and ultra-structural analysis, we discovered that the C-terminus is essential for replication. The N-terminal 480 amino acids are dispensable for replication in cell culture, although serve some non-essential function as viral titers are reduced in the presence of this truncation. Furthermore, the C-terminal 133 amino acids are important in so much that their absence leads to a lethal phenotype. We further probed the carboxy terminal half of pUL37 by alanine scanning mutagenesis of conserved residues among alphaherpesviruses. Mutant viruses were screened for the inability to form plaques-or greatly reduced plaque size-on Vero cells, of which 22 mutations were chosen for additional analysis. Viruses discovered to have the greatest reduction in viral titers on Vero cells were examined by electron microscopy (EM) and by confocal light microscopy for pUL37-EGFP cellular localization. This genetic approach identified both essential and non-essential domains and residues of the HSV-1 UL37 gene product. The mutations identified in this study are recognized as significant candidates for further analysis of the pUL37 function and may unveil previously undiscovered roles and interactions of this essential tegument gene.


Asunto(s)
Aminoácidos/genética , Herpesvirus Humano 1/genética , Proteínas Estructurales Virales/genética , Replicación Viral , Aminoácidos/química , Animales , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Herpesvirus Humano 1/química , Herpesvirus Humano 1/fisiología , Mutación , Fenotipo , Células Vero , Proteínas Estructurales Virales/química , Virión/genética , Virión/metabolismo , Ensamble de Virus
2.
Mol Biol Cell ; 27(14): 2161-71, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226479

RESUMEN

Mitochondrial membrane phospholipid composition affects mitochondrial function by influencing the assembly of the mitochondrial respiratory chain (MRC) complexes into supercomplexes. For example, the loss of cardiolipin (CL), a signature non-bilayer-forming phospholipid of mitochondria, results in disruption of MRC supercomplexes. However, the functions of the most abundant mitochondrial phospholipids, bilayer-forming phosphatidylcholine (PC) and non-bilayer-forming phosphatidylethanolamine (PE), are not clearly defined. Using yeast mutants of PE and PC biosynthetic pathways, we show a specific requirement for mitochondrial PE in MRC complex III and IV activities but not for their formation, whereas loss of PC does not affect MRC function or formation. Unlike CL, mitochondrial PE or PC is not required for MRC supercomplex formation, emphasizing the specific requirement of CL in supercomplex assembly. Of interest, PE biosynthesized in the endoplasmic reticulum (ER) can functionally substitute for the lack of mitochondrial PE biosynthesis, suggesting the existence of PE transport pathway from ER to mitochondria. To understand the mechanism of PE transport, we disrupted ER-mitochondrial contact sites formed by the ERMES complex and found that, although not essential for PE transport, ERMES facilitates the efficient rescue of mitochondrial PE deficiency. Our work highlights specific roles of non-bilayer-forming phospholipids in MRC function and formation.


Asunto(s)
Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Cardiolipinas/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
J Gen Virol ; 95(Pt 8): 1755-1769, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24824860

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Animales , Línea Celular , Análisis Mutacional de ADN , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Spodoptera
4.
J Virol ; 87(7): 3915-29, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365436

RESUMEN

All herpesviruses encode a complex of two proteins, referred to as the nuclear egress complex (NEC), which together facilitate the exit of assembled capsids from the nucleus. Previously, we showed that the Kaposi's sarcoma-associated herpesvirus (KSHV) NEC specified by the ORF67 and ORF69 genes when expressed in insect cells using baculoviruses for protein expression forms a complex at the nuclear membrane and remodels these membranes to generate nuclear membrane-derived vesicles. In this study, we have analyzed the functional domains of the KSHV NEC proteins and their interactions. Site-directed mutagenesis of gammaherpesvirus conserved residues revealed functional domains of these two proteins, which in many cases abolish the formation of the NEC and remodeling of nuclear membranes. Small in-frame deletions within ORF67 in all cases result in loss of the ability of the mutant protein to induce cellular membrane proliferation as well as to interact with ORF69. Truncation of the C terminus of ORF67 that resides in the perinuclear space does not impair the functions of ORF67; however, deletion of the transmembrane domain of ORF67 produces a protein that cannot induce membrane proliferation but can still interact with ORF69 in the nucleus and can be tethered to the nuclear membrane by virtue of its interaction with the wild-type-membrane-anchored ORF67. In-frame deletions in ORF69 have varied effects on NEC formation, but all abolish remodeling of nuclear membranes into circular structures. One mutant interacts with ORF67 as well as the wild-type protein but cannot function in membrane curvature and fission events that generate circular vesicles. These studies genetically confirm that ORF67 is required for cellular membrane proliferation and that ORF69 is the factor required to remodel these duplicated membranes into circular-virion-size vesicles. Furthermore, we also investigated the NEC encoded by Epstein-Barr virus (EBV). The EBV complex comprised of BFRF1 and BFLF2 was visualized at the nuclear membrane using autofluorescent protein fusions. BFRF1 is a potent inducer of membrane proliferation; however, BFLF2 cannot remodel these membranes into circular structures. What was evident is the superior remodeling activity of ORF69, which could convert the host membrane proliferations induced by BFRF1 into circular structures.


Asunto(s)
Membrana Celular/metabolismo , Herpesvirus Humano 8/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Western Blotting , Cartilla de ADN/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutagénesis , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Células Sf9 , Spodoptera , Vesículas Transportadoras/metabolismo , Proteína Fluorescente Roja
5.
J Virol ; 86(21): 11926-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915821

RESUMEN

Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, V25, R46, G66, and R70 in the assembly domain, when changed to alanine, completely abolish or reduce capsid assembly.


Asunto(s)
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Baculoviridae , Línea Celular , Vectores Genéticos , Microscopía Electrónica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Alineación de Secuencia , Virión/ultraestructura
6.
J Virol ; 86(1): 594-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013050

RESUMEN

The Kaposi's sarcoma-associated herpesvirus nuclear egress complex is composed of two proteins, ORF67 and ORF69. In this study, we have recapitulated the KSHV complex by coexpression of these two proteins in insect cells using expression from recombinant baculoviruses. The proteins form a complex at the nuclear membrane as judged by live-cell analysis of protein fusions tagged with green fluorescent protein (GFP) and mCherry. Ultrastructural analysis of infected cells showed that ORF67 expression results in reduplication of the nuclear membrane. When the two proteins are expressed together, numerous virion-size nuclear membrane-derived vesicles were evident at the nuclear margins.


Asunto(s)
Vesículas Citoplasmáticas/virología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Membrana Nuclear/virología , Proteínas Virales/genética , Liberación del Virus , Animales , Línea Celular , Herpesvirus Humano 8/genética , Humanos , Unión Proteica , Proteínas Virales/metabolismo
7.
J Virol ; 85(23): 12698-707, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21957296

RESUMEN

VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Virión/ultraestructura , Replicación Viral , Secuencia de Aminoácidos , Animales , Western Blotting , Cápside/química , Proteínas de la Cápside/genética , Chlorocebus aethiops , Prueba de Complementación Genética , Genoma Viral , Herpes Simple/genética , Herpes Simple/metabolismo , Herpesvirus Humano 1/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis , Plásmidos , Técnicas del Sistema de Dos Híbridos , Células Vero , Ensamble de Virus
8.
J Cell Sci ; 124(Pt 9): 1403-10, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21502136

RESUMEN

The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.


Asunto(s)
Proteínas F-Box/metabolismo , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Immunoblotting , Inmunoprecipitación , Fusión de Membrana/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Unión Proteica , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...