Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(11): 770, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007517

RESUMEN

Phenotypic and functional changes in vascular smooth muscle cells (VSMCs) contribute significantly to cardiovascular diseases (CVD) but factors driving early adverse vascular changes are poorly understood. We report on novel and important roles for the Brn-3b/POU4F2 (Brn-3b) transcription factor (TF) in controlling VSMC integrity and function. Brn-3b protein is expressed in mouse aorta with localisation to VSMCs. Male Brn-3b knock-out (KO) aortas displayed extensive remodelling with increased extracellular matrix (ECM) deposition, elastin fibre disruption and small but consistent narrowing/coarctation in the descending aortas. RNA sequencing analysis showed that these effects were linked to deregulation of genes required for calcium (Ca2+) signalling, vascular contractility, sarco-endoplasmic reticulum (S/ER) stress responses and immune function in Brn-3b KO aortas and validation studies confirmed changes in Ca2+ signalling genes linked to increased intracellular Ca2+ and S/ER Ca2+ depletion [e.g. increased, Cacna1d Ca2+ channels; ryanodine receptor 2, (RyR2) and phospholamban (PLN) but reduced ATP2a1, encoding SERCA1 pump] and chaperone proteins, Hspb1, HspA8, DnaJa1 linked to increased S/ER stress, which also contributes to contractile dysfunction. Accordingly, vascular rings from Brn-3b KO aortas displayed attenuated contractility in response to KCl or phenylephrine (PE) while Brn-3b KO-derived VSMC displayed abnormal Ca2+ signalling following ATP stimulation. This data suggests that Brn-3b target genes are necessary to maintain vascular integrity /contractile function and deregulation upon loss of Brn-3b will contribute to contractile dysfunction linked to CVD.


Asunto(s)
Enfermedades Cardiovasculares , Músculo Liso Vascular , Animales , Masculino , Ratones , Aorta/metabolismo , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Transcripción Brn-3B/metabolismo
2.
Circulation ; 143(11): 1123-1138, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33334125

RESUMEN

BACKGROUND: Although it has long been recognized that smooth muscle Na/K ATPase modulates vascular tone and blood pressure (BP), the role of its accessory protein phospholemman has not been characterized. The aim of this study was to test the hypothesis that phospholemman phosphorylation regulates vascular tone in vitro and that this mechanism plays an important role in modulation of vascular function and BP in experimental models in vivo and in humans. METHODS: In mouse studies, phospholemman knock-in mice (PLM3SA; phospholemman [FXYD1] in which the 3 phosphorylation sites on serines 63, 68, and 69 are mutated to alanines), in which phospholemman is rendered unphosphorylatable, were used to assess the role of phospholemman phosphorylation in vitro in aortic and mesenteric vessels using wire myography and membrane potential measurements. In vivo BP and regional blood flow were assessed using Doppler flow and telemetry in young (14-16 weeks) and old (57-60 weeks) wild-type and transgenic mice. In human studies, we searched human genomic databases for mutations in phospholemman in the region of the phosphorylation sites and performed analyses within 2 human data cohorts (UK Biobank and GoDARTS [Genetics of Diabetes Audit and Research in Tayside]) to assess the impact of an identified single nucleotide polymorphism on BP. This single nucleotide polymorphism was expressed in human embryonic kidney cells, and its effect on phospholemman phosphorylation was determined using Western blotting. RESULTS: Phospholemman phosphorylation at Ser63 and Ser68 limited vascular constriction in response to phenylephrine. This effect was blocked by ouabain. Prevention of phospholemman phosphorylation in the PLM3SA mouse profoundly enhanced vascular responses to phenylephrine both in vitro and in vivo. In aging wild-type mice, phospholemman was hypophosphorylated, and this correlated with the development of aging-induced essential hypertension. In humans, we identified a nonsynonymous coding variant, single nucleotide polymorphism rs61753924, which causes the substitution R70C in phospholemman. In human embryonic kidney cells, the R70C mutation prevented phospholemman phosphorylation at Ser68. This variant's rare allele is significantly associated with increased BP in middle-aged men. CONCLUSIONS: These studies demonstrate the importance of phospholemman phosphorylation in the regulation of vascular tone and BP and suggest a novel mechanism, and therapeutic target, for aging-induced essential hypertension in humans.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Genómica/métodos , Hipertensión/tratamiento farmacológico , Proteínas de la Membrana/uso terapéutico , Fosfoproteínas/uso terapéutico , Fosforilación/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Masculino , Proteínas de la Membrana/farmacología , Ratones , Fosfoproteínas/farmacología
3.
Nat Metab ; 2(11): 1223-1231, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106688

RESUMEN

Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Cardiomegalia/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Angiotensina II , Animales , Proteínas de Transporte de Anión/biosíntesis , Proteínas de Transporte de Anión/genética , Cardiomegalia/patología , Proliferación Celular , Ciclo del Ácido Cítrico , Constricción Patológica , Femenino , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Transportadores de Ácidos Monocarboxílicos/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ácido Pirúvico/metabolismo
4.
Cardiovasc Res ; 116(1): 51-62, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31372656

RESUMEN

AIMS: Under hypoxic conditions, nitrite (NO2-) can be reduced to nitric oxide (NO) eliciting vasorelaxation. However, nitrite also exerts vasorelaxant effects of potential therapeutic relevance under normal physiological conditions via undetermined mechanisms. We, therefore, sought to investigate the mechanism(s) by which nitrite regulates the vascular system in normoxia and, specifically, whether the biological effects are a result of NO generation (as in hypoxia) or mediated via alternative mechanisms involving classical downstream targets of NO [e.g. effects on protein kinase G1α (PKG1α)]. METHODS AND RESULTS: Ex vivo myography revealed that, unlike in thoracic aorta (conduit vessels), the vasorelaxant effects of nitrite in mesenteric resistance vessels from wild-type (WT) mice were NO-independent. Oxidants such as H2O2 promote disulfide formation of PKG1α, resulting in NO- cyclic guanosine monophosphate (cGMP) independent kinase activation. To explore whether the microvascular effects of nitrite were associated with PKG1α oxidation, we used a Cys42Ser PKG1α knock-in (C42S PKG1α KI; 'redox-dead') mouse that cannot transduce oxidant signals. Resistance vessels from these C42S PKG1α KI mice were markedly less responsive to nitrite-induced vasodilation. Intraperitoneal (i.p.) bolus application of nitrite in conscious WT mice induced a rapid yet transient increase in plasma nitrite and cGMP concentrations followed by prolonged hypotensive effects, as assessed using in vivo telemetry. In the C42S PKG1α KI mice, the blood pressure lowering effects of nitrite were lower compared to WT. Increased H2O2 concentrations were detected in WT resistance vessel tissue challenged with nitrite. Consistent with this, increased cysteine and glutathione persulfide levels were detected in these vessels by mass spectrometry, matching the temporal profile of nitrite's effects on H2O2 and blood pressure. CONCLUSION: Under physiological conditions, nitrite induces a delayed and long-lasting blood pressure lowering effect, which is NO-independent and occurs via a new redox mechanism involving H2O2, persulfides, and PKG1α oxidation/activation. Targeting this novel pathway may provide new prospects for anti-hypertensive therapy.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Peróxido de Hidrógeno/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Nitrito de Sodio/farmacología , Sulfuros/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/enzimología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/deficiencia , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Masculino , Arterias Mesentéricas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Oxidación-Reducción , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 116(26): 13016-13025, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186362

RESUMEN

Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Arteria Pulmonar/patología , Adulto , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disulfuros/química , Femenino , Fibrosis , Técnicas de Sustitución del Gen , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Hipoxia/sangre , Hipoxia/tratamiento farmacológico , Pulmón/irrigación sanguínea , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Oxidantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfuros/administración & dosificación , Sulfuros/sangre , Sulfuros/metabolismo , Regulación hacia Arriba , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
7.
Circulation ; 140(2): 126-137, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116951

RESUMEN

BACKGROUND: The health-promoting and disease-limiting abilities of resveratrol, a natural polyphenol, has led to considerable interest in understanding the mechanisms of its therapeutic actions. The polyphenolic rings of resveratrol enable it to react with and detoxify otherwise injurious oxidants. Whilst the protective actions of resveratrol are commonly ascribed to its antioxidant activity, here we show that this is a misconception. METHODS: The ability of resveratrol to oxidize cGMP-dependent PKG1α (protein kinase 1α) was assessed in isolated rat aortic smooth muscle cells, and the mechanism of action of this polyphenol was characterized using in vitro experiments, mass spectrometry and electron paramagnetic resonance. The blood pressure of wild-type and C42S knock-in mice was assessed using implanted telemetry probes. Mice were made hypertensive by administration of angiotensin II via osmotic mini-pumps and blood pressure monitored during 15 days of feeding with chow diet containing vehicle or resveratrol. RESULTS: Oxidation of the phenolic rings of resveratrol paradoxically leads to oxidative modification of proteins, explained by formation of a reactive quinone that oxidizes the thiolate side chain of cysteine residues; events that were enhanced in cells under oxidative stress. Consistent with these observations and its ability to induce vasodilation, resveratrol induced oxidative activation of PKG1α and lowered blood pressure in hypertensive wild-type mice, but not C42S PKG1α knock-in mice that are resistant to disulfide activation. CONCLUSIONS: Resveratrol mediates lowering of blood pressure by paradoxically inducing protein oxidation, especially during times of oxidative stress, a mechanism that may be a common feature of antioxidant molecules.


Asunto(s)
Antioxidantes/farmacología , Presión Sanguínea/efectos de los fármacos , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Estrés Oxidativo/efectos de los fármacos , Resveratrol/farmacología , Animales , Presión Sanguínea/fisiología , Células Cultivadas , Humanos , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Telemetría/métodos
8.
Nature ; 566(7745): 548-552, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760924

RESUMEN

Singlet molecular oxygen (1O2) has well-established roles in photosynthetic plants, bacteria and fungi1-3, but not in mammals. Chemically generated 1O2 oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine4, whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 15. Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure6. However, whether indoleamine 2,3-dioxygenase 1 forms 1O2 and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of 1O2. We observed that in the presence of hydrogen peroxide, the enzyme generates 1O2 and that this is associated with the stereoselective oxidation of L-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1α. Our findings demonstrate a pathophysiological role for 1O2 in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions.


Asunto(s)
Presión Sanguínea/fisiología , Inflamación/sangre , Inflamación/fisiopatología , Oxígeno Singlete/metabolismo , Vasodilatadores/metabolismo , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Cisteína/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/enzimología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Transducción de Señal , Oxígeno Singlete/química , Triptófano/química , Triptófano/metabolismo
9.
Redox Biol ; 21: 101077, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30593979

RESUMEN

Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. 'Redox dead' C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Conducta Alimentaria , Oxidación-Reducción , Recompensa , Animales , Conducta Animal , Disulfuros/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
10.
Sci Rep ; 7(1): 9938, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855531

RESUMEN

Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli's salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Disulfuros/metabolismo , Mutagénesis Sitio-Dirigida , Óxidos de Nitrógeno/farmacología , Animales , Dominio Catalítico , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Cisteína/genética , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Oxidación-Reducción
11.
Hypertension ; 70(3): 577-586, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28716990

RESUMEN

Arterial hypertension continues to be a major health burden. Development of new antihypertensive drugs that engage vasodilatory mechanisms not harnessed by available therapies offer therapeutic potential. Oxidants induce an interprotein disulfide in PKG Iα (protein kinase G Iα) at C42, which is associated with its targeting and activation, resulting in vasodilation and blood pressure lowering. Consequently, we developed an assay and screened for electrophilic drugs that activate PKG Iα by selectively targeting C42, as such compounds have potential as novel antihypertensives with a mechanism of action that differs from current therapies. In this way, a drug that we termed G1 was identified, which targets C42 of PKG Iα to induce vasodilation of isolated resistance blood vessels and blood pressure lowering in a mouse model of angiotensin II-induced hypertension. In contrast, these antihypertensive effects were deficient in angiotensin II-induced hypertensive C42S PKG Iα knockin mice. These transgenic mice were engineered to have the reactive cysteinyl thiol replaced with a hydroxyl so that it cannot react with endogenous vasodilatory oxidants or electrophiles such as drug G1. These studies, therefore, provide validation of PKG Iα C42 as the target of G1, as well as proof-of-principle for a new class of antihypertensive drugs that have potential for further development for clinical use in humans.


Asunto(s)
Antihipertensivos/farmacología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Hipertensión , Músculo Liso Vascular , Vasodilatación/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Oxidación-Reducción/efectos de los fármacos , Resultado del Tratamiento , Vasodilatación/fisiología
12.
Circulation ; 135(22): 2163-2177, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28298457

RESUMEN

BACKGROUND: Hypertension caused by increased renin-angiotensin system activation is associated with elevated reactive oxygen species production. Previous studies implicate NADPH oxidase (Nox) proteins as important reactive oxygen species sources during renin-angiotensin system activation, with different Nox isoforms being potentially involved. Among these, Nox2 is expressed in multiple cell types, including endothelial cells, fibroblasts, immune cells, and microglia. Blood pressure (BP) is regulated at the central nervous system, renal, and vascular levels, but the cell-specific role of Nox2 in BP regulation is unknown. METHODS: We generated a novel mouse model with a floxed Nox2 gene and used Tie2-Cre, LysM Cre, or Cdh5-CreERT2 driver lines to develop cell-specific models of Nox2 perturbation to investigate its role in BP regulation. RESULTS: Unexpectedly, Nox2 deletion in myeloid but not endothelial cells resulted in a significant reduction in basal BP. Both Tie2-CreNox2 knockout (KO) mice (in which Nox2 was deficient in both endothelial cells and myeloid cells) and LysM CreNox2KO mice (in which Nox2 was deficient in myeloid cells) had significantly lower BP than littermate controls, whereas basal BP was unaltered in Cdh5-CreERT2 Nox2KO mice (in which Nox2 is deficient only in endothelial cells). The lower BP was attributable to an increased NO bioavailability that dynamically dilated resistance vessels in vivo under basal conditions without a change in renal function. Myeloid-specific Nox2 deletion had no effect on angiotensin II-induced hypertension, which, however, was blunted in Tie2-CreNox2KO mice, along with preservation of endothelium-dependent relaxation during angiotensin II stimulation. CONCLUSIONS: We identify a hitherto unrecognized modulation of basal BP by myeloid cell Nox2, whereas endothelial cell Nox2 regulates angiotensin II-induced hypertension. These results identify distinct cell-specific roles for Nox2 in BP regulation.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/enzimología , Hipertensión/enzimología , Glicoproteínas de Membrana/deficiencia , Células Mieloides/enzimología , NADPH Oxidasas/deficiencia , Angiotensina II/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Células Endoteliales/efectos de los fármacos , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/efectos de los fármacos , NADPH Oxidasa 2
13.
Nat Commun ; 7: 13187, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782102

RESUMEN

The Frank-Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16-a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank-Starling response.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Diástole/fisiología , Ventrículos Cardíacos/enzimología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Animales , Fenómenos Biomecánicos , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Gasto Cardíaco/fisiología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Disulfuros/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica/fisiología , Miocardio/citología , Miocitos Cardíacos/citología , Técnicas de Cultivo de Órganos , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Cultivo Primario de Células , Serina/metabolismo , Especificidad por Sustrato
14.
J Biol Chem ; 291(33): 17427-36, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27342776

RESUMEN

Phosphodiesterase 5 (PDE5) inhibitors limit myocardial injury caused by stresses, including doxorubicin chemotherapy. cGMP binding to PKG Iα attenuates oxidant-induced disulfide formation. Because PDE5 inhibition elevates cGMP and protects from doxorubicin-induced injury, we reasoned that this may be because it limits PKG Iα disulfide formation. To investigate the role of PKG Iα disulfide dimerization in the development of apoptosis, doxorubicin-induced cardiomyopathy was compared in male wild type (WT) or disulfide-resistant C42S PKG Iα knock-in (KI) mice. Echocardiography showed that doxorubicin treatment caused loss of myocardial tissue and depressed left ventricular function in WT mice. Doxorubicin also reduced pro-survival signaling and increased apoptosis in WT hearts. In contrast, KI mice were markedly resistant to the dysfunction induced by doxorubicin in WTs. In follow-on experiments the influence of the PDE5 inhibitor tadalafil on the development of doxorubicin-induced cardiomyopathy in WT and KI mice was investigated. In WT mice, co-administration of tadalafil with doxorubicin reduced PKG Iα oxidation caused by doxorubicin and also protected against cardiac injury and loss of function. KI mice were again innately resistant to doxorubicin-induced cardiotoxicity, and therefore tadalafil afforded no additional protection. Doxorubicin decreased phosphorylation of RhoA (Ser-188), stimulating its GTPase activity to activate Rho-associated protein kinase (ROCK) in WTs. These pro-apoptotic events were absent in KI mice and were attenuated in WTs co-administered tadalafil. PKG Iα disulfide formation triggers cardiac injury, and this initiation of maladaptive signaling can be blocked by pharmacological therapies that elevate cGMP, which binds kinase to limit its oxidation.


Asunto(s)
Cardiomegalia , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Disulfuros/metabolismo , Doxorrubicina , Insuficiencia Cardíaca , Inhibidores de Fosfodiesterasa 5/farmacología , Sistemas de Mensajero Secundario , Tadalafilo/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/prevención & control , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/prevención & control , Ratones , Ratones Mutantes , Oxidación-Reducción , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
15.
Biochemistry ; 55(5): 751-61, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26784639

RESUMEN

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed endogenously under conditions associated with production of both reactive oxygen species and nitric oxide. It acts as an electrophilic second messenger in the regulation of cellular signaling by inducing a post-translational modification of redox-sensitive protein thiols via covalent adduction of cGMP moieties to protein thiols (protein S-guanylation). Here, we demonstrate that 8-nitro-cGMP potentially S-guanylates thiol groups of cGMP-dependent protein kinase (PKG), the enzyme that serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses. S-Guanylation of PKG was found to occur in a site specific manner; Cys42 and Cys195 were the susceptible residues among 11 Cys residues. Importantly, S-guanylation at Cys195, which is located in the high-affinity cGMP binding domain of PKG, causes persistent enzyme activation as determined by in vitro kinase assay as well as by an organ bath assay. In vivo, S-guanylation of PKG was demonstrated to occur in mice without any specific treatment and was significantly enhanced by lipopolysaccharide administration. These findings warrant further investigation in terms of the physiological and pathophysiological roles of S-guanylation-dependent persistent PKG activation.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Guanina/metabolismo , Nucleótidos Cíclicos/metabolismo , Proteínas/metabolismo , Animales , Activación Enzimática , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/enzimología , Miocardio/metabolismo
16.
Mol Cell Proteomics ; 15(1): 246-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26582072

RESUMEN

The endogenous mechanisms contributing to tissue survival following myocardial infarction are not fully understood. We investigated the alterations in the mitochondrial proteome after ischemia-reperfusion (I/R) and its possible implications on cell survival. Mitochondrial proteomic analysis of cardiac tissue from an in vivo porcine I/R model found that surviving tissue in the peri-infarct border zone showed increased expression of several proteins. Notably, these included subunits of the mitochondrial pyruvate carrier (MPC), namely MPC1 and MPC2. Western blot, immunohistochemistry, and mRNA analysis corroborated the elevated expression of MPC in the surviving tissue. Furthermore, MPC1 and MPC2 protein levels were found to be markedly elevated in the myocardium of ischemic cardiomyopathy patients. These findings led to the hypothesis that increased MPC expression is cardioprotective due to enhancement of mitochondrial pyruvate uptake in the energy-starved heart following I/R. To test this, isolated mouse hearts perfused with a modified Krebs buffer (containing glucose, pyruvate, and octanoate as metabolic substrates) were subjected to I/R with or without the MPC transport inhibitor UK5099. UK5099 increased myocardial infarction and attenuated post-ischemic recovery of left ventricular end-diastolic pressure. However, aerobically perfused control hearts that were exposed to UK5099 did not modulate contractile function, although pyruvate uptake was blocked as evidenced by increased cytosolic lactate and pyruvate levels. Our findings indicate that increased expression of MPC leads to enhanced uptake and utilization of pyruvate during I/R. We propose this as a putative endogenous mechanism that promotes myocardial survival to limit infarct size.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteoma/metabolismo , Animales , Proteínas de Transporte de Anión , Western Blotting , Humanos , Inmunohistoquímica , Masculino , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos , Daño por Reperfusión Miocárdica/genética , Análisis de Componente Principal , Proteoma/genética , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Espectrometría de Masas en Tándem , Supervivencia Tisular
17.
J Biol Chem ; 291(4): 1774-1788, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26620565

RESUMEN

The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production.


Asunto(s)
Cistationina gamma-Liasa/genética , Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , NADPH Oxidasas/metabolismo , Transcripción Genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Cistationina gamma-Liasa/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Transducción de Señal
18.
Front Pharmacol ; 6: 139, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236235

RESUMEN

Elevated levels of oxidants in biological systems have been historically referred to as "oxidative stress," a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables "redox signaling." In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered.

19.
Nat Commun ; 6: 7920, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26258640

RESUMEN

Angiogenesis is essential for tissue development, wound healing and tissue perfusion, with its dysregulation linked to tumorigenesis, rheumatoid arthritis and heart disease. Here we show that pro-angiogenic stimuli couple to NADPH oxidase-dependent generation of oxidants that catalyse an activating intermolecular-disulphide between regulatory-RIα subunits of protein kinase A (PKA), which stimulates PKA-dependent ERK signalling. This is crucial to blood vessel growth as 'redox-dead' Cys17Ser RIα knock-in mice fully resistant to PKA disulphide-activation have deficient angiogenesis in models of hind limb ischaemia and tumour-implant growth. Disulphide-activation of PKA represents a new therapeutic target in diseases with aberrant angiogenesis.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neovascularización Fisiológica/genética , Animales , Aorta/fisiología , Bovinos , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Células Endoteliales , Técnicas de Sustitución del Gen , Miembro Posterior , Inmunoprecipitación , Isquemia , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/irrigación sanguínea , Oxidación-Reducción , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/farmacología
20.
Hypertension ; 64(6): 1344-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25267801

RESUMEN

Dysregulated blood pressure control leading to hypertension is prevalent and is a risk factor for several common diseases. Fully understanding blood pressure regulation offers the possibility of developing rationale therapies to alleviate hypertension and associated disease risks. Although hydrogen sulfide (H2S) is a well-established endogenous vasodilator, the molecular basis of its blood-pressure lowering action is incompletely understood. H2S-dependent vasodilation and blood pressure lowering in vivo was mediated by it catalyzing formation of an activating interprotein disulfide within protein kinase G (PKG) Iα. However, this oxidative activation of PKG Iα is counterintuitive because H2S is a thiol-reducing molecule that breaks disulfides, and so it is not generally anticipated to induce their formation. This apparent paradox was explained by H2S in the presence of molecular oxygen or hydrogen peroxide rapidly converting to polysulfides, which have oxidant properties that in turn activate PKG by inducing the disulfide. These observations are relevant in vivo because transgenic knockin mice in which the cysteine 42 redox sensor within PKG has been systemically replaced with a redox-dead serine residue are resistant to H2S-induced blood pressure lowering. Thus, a primary mechanism by which the reductant molecule H2S lowers blood pressure is mediated somewhat paradoxically by the oxidative activation of PKG.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipertensión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sustancias Reductoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA