RESUMEN
Radioresistance is a major cause of radiotherapy failure among patients with cervical cancer (CC), the fourth most common cause of cancer mortality in women worldwide. Traditional CC cell lines lose intra-tumoral heterogeneity, posing a challenge for radioresistance research. Meanwhile, conditional reprogramming (CR) maintains intra-tumoral heterogeneity and complexity, as well as the genomic and clinical characteristics of original cells and tissues. Three radioresistant and two radiosensitive primary CC cell lines were developed under CR conditions from patient specimens, and their characteristics were verified via immunofluorescence, growth kinetics, clone forming assay, xenografting, and immunohistochemistry. The CR cell lines had homogenous characteristics with original tumor tissues and maintained radiosensitivity in vitro and in vivo, while also maintaining intra-tumoral heterogeneity according to single-cell RNA sequencing analysis. Upon further investigation, 20.83% of cells in radioresistant CR cell lines aggregated in the G2/M cell cycle phase, which is sensitive to radiation, compared to 38.1% of cells in radiosensitive CR cell lines. This study established three radioresistant and two radiosensitive CC cell lines through CR, which will benefit further research investigating radiosensitivity in CC. Our present study may provide an ideal model for research on development of radioresistance and potential therapeutic targets in CC.
Asunto(s)
Transcriptoma , Neoplasias del Cuello Uterino , Humanos , Femenino , Línea Celular Tumoral , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/patología , Perfilación de la Expresión Génica , Tolerancia a Radiación/genéticaRESUMEN
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as Nglycans or Oglycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.