Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(22): 6761-6773, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37698607

RESUMEN

Pullulan is a polymer produced by Aureobasidium spp. The yield of pullulan production can be impacted by the cellular differentiation of Aureobasidium spp., which changes with alterations in the growth environment. To improve pullulan yield, identifying key factors that regulate cellular differentiation is crucial. In this study, the main form of pullulan synthesis in Aureobasidium pullulans NG was through swollen cells (SC). The results showed that citric acid (CA) can regulate the cellular differentiation of Aureobasidium pullulans NG by accumulating higher levels of CA in the cells to maintain growth in SC form and increase pullulan production. The addition of 1.0% CA to Aureobasidium pullulans NG for 96 h resulted in a significant increase in pullulan production, producing 18.32 g/l compared to the control group which produced 10.23 g/l. Our findings suggest that controlling cellular differentiation using CA is a promising approach for enhancing pullulan production in Aureobasidium pullulans. KEY POINTS: • The regulation of cell differentiation in Aureobasidium pullulans NG is demonstrated to be influenced by citric acid. • Intracellular citric acid levels in Aureobasidium pullulans NG have been shown to support the growth of swollen cells. • Citric acid has been found to increase pullulan production in Aureobasidium pullulans NG.

2.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012870

RESUMEN

When organisms are stimulated by external stresses, oxidative stress is induced, resulting in the production of large amounts of reactive oxygen species (ROS) that inhibit cell growth and accelerate cellular aging until death. Understanding the molecular mechanisms of abiotic stress is important to enhance cellular resistance, and Aureobasidium pullulans, a highly resistant yeast-like fungus, can use cellular differentiation to resist environmental stress. Here, swollen cells (SCs) from two different differentiation periods in Aureobasidium pullulans NG showed significantly higher antioxidant capacity and stress defense capacity than yeast-like cells (YL). The transcriptome and the metabolome of both cells were analyzed, and the results showed that amino acid metabolism, carbohydrate metabolism, and lipid metabolism were significantly enriched in SCs. Glyoxylate metabolism was significantly upregulated in carbohydrate metabolism, replacing the metabolic hub of the citric acid (TCA) cycle, helping to coordinate multiple metabolic pathways and playing an important role in the resistance of Aureobasidium pullulans NG to environmental stress. Finally, we obtained 10 key genes and two key metabolites in SCs, which provide valuable clues for subsequent validation. In conclusion, these results provide valuable information for assessing central metabolism-mediating oxidative stress in Aureobasidium pullulans NG, and also provide new ideas for exploring the pathways of eukaryotic resistance to abiotic stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...