Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta Med ; 77(15): 1759-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21509717

RESUMEN

Artemisinin is an effective antimalarial drug isolated from the medicinal plant Artemisia annua L. Due to its increasing market demand and the low yield in A. annua, there is a great interest in increasing its production. In this paper, in an attempt to increase artemisinin content of A. ANNUA by suppressing the expression of ß-caryophyllene synthase, a sesquiterpene synthase competing as a precursor of artemisinin, the antisense fragment (750 bp) of ß-caryophyllene synthase cDNA was inserted into the plant expression vector pBI121 and introduced into A. annua by Agrobacterium-mediated transformation. PCR and Southern hybridization confirmed the stable integration of multiple copies of the transgene in 5 different transgenic lines of A. annua. Reverse transcription PCR showed that the expression of endogenous CPS in the transgenic lines was significantly lower than that in the wild-type control A. annua plants, and ß-caryophyllene content decreased sharply in the transgenic lines in comparison to the control. The artemisinin content of one of the transgenic lines showed an increase of 54.9 % compared with the wild-type control. The present study demonstrated that the inhibition pathway in the precursor competition for artemisinin biosynthesis by anti-sense technology is an effective means of increasing the artemisinin content of A. annua plants.


Asunto(s)
Antiinfecciosos/metabolismo , Artemisia annua/metabolismo , Artemisininas/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Ligasas/genética , Antiinflamatorios no Esteroideos/metabolismo , Artemisia annua/enzimología , Artemisia annua/genética , ADN sin Sentido/genética , ADN Complementario/genética , ADN de Plantas/genética , Regulación hacia Abajo/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicina Tradicional China , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plantas Medicinales , Plásmidos , Sesquiterpenos Policíclicos , ARN Mensajero/genética , ARN de Planta/genética , Plantones/enzimología , Plantones/genética , Plantones/metabolismo , Sesquiterpenos/metabolismo
2.
Plant Cell Rep ; 28(7): 1127-35, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19521701

RESUMEN

This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.


Asunto(s)
Artemisia annua/enzimología , Artemisininas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Artemisia annua/efectos de los fármacos , Artemisia annua/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/genética , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/metabolismo , Estructura Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Planta ; 229(3): 457-69, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18998157

RESUMEN

A type III polyketide synthase cDNA and the corresponding gene (PcPKS2) were cloned from Polygonum cuspidatum Sieb. et Zucc. Sequencing results showed that the ORF of PcPKS2 was interrupted by three introns, which was an unexpected finding because all type III PKS genes studied so far contained only one intron at a conserved site in flowering plants, except for an Antirrhinum majus chalcone synthase gene. Besides the unusual gene structure, PcPKS2 showed some interesting characteristics: (1) the CHS "gatekeepers" Phe215 and Phe265 are uniquely replaced by Leu and Cys, respectively; (2) recombinant PcPKS2 overexpressed in Escherichia coli efficiently afforded 4-coumaroyltriacetic acid lactone (CTAL) as a major product along with bis-noryangonin (BNY) and p-hydroxybenzalacetone at low pH; however, it effectively yielded p-hydroxybenzalacetone as a dominant product along with CTAL and BNY at high pH. Beside p-hydroxybenzalacetone, CTAL and BNY, a trace amount of naringenin chalcone could be detected in assays at different pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. PcPKS2 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrate. DNA gel blot analysis indicated that there are two to four PcPKS2 copies in the P. cuspidatum genome. RNA gel blot analysis revealed that PcPKS2 is highly expressed in the rhizomes and in young leaves, but not in the roots of the plant. PcPKS2 transcripts in leaves were induced by pathogen infection, but not by wounding.


Asunto(s)
Fallopia japonica/enzimología , Genes de Plantas , Proteínas de Plantas/genética , Sintasas Poliquetidas/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario , Fallopia japonica/genética , Expresión Génica , Intrones , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Sintasas Poliquetidas/química , Sintasas Poliquetidas/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...