Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39024478

RESUMEN

Structured light three-dimensional (3D) imaging technology captures the geometric information on 3D objects by recording waves reflected from the objects' surface. The projection angle and point number of the laser dots directly determine the field-of-view (FOV) and the resolution of the reconstructed image. Conventionally, diffractive optical elements with micrometer-scale pixel size have been used to generate laser dot arrays, leading to limited FOV and point number within the projection optical path. Here, we theoretically put forward and experimentally demonstrate a monocular geometric phase metasurface composed of deep subwavelength meta-atoms to generate a 10 798 dot array within an FOV of 163°. Attributed to the vast number and high-density point cloud generated by the metasurface, the 3D reconstructed results showcase a maximum relative error in depth of 5.3 mm and a reconstruction error of 6.07%. Additionally, we propose a spin-multiplexed metasurface design method capable of doubling the number of lattice points. We demonstrate its application in the field of 3D imaging through experiments, where the 3D reconstructed results show a maximum relative depth error of 0.44 cm and a reconstruction error of 2.78%. Our proposed metasurface featuring advanced point cloud generation holds substantial potential for various applications such as facial recognition, autonomous driving, virtual reality, and beyond.

2.
ACS Appl Mater Interfaces ; 16(26): 33935-33942, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38899863

RESUMEN

Simultaneous circular dichroism and wavefront manipulation have gained considerable attention in various applications, such as chiroptical spectroscopy, chiral imaging, sorting and detection of enantiomers, and quantum optics, which can improve the miniaturization and integration of the optical system. Typically, structures with n-fold rotational symmetry (n ≥ 3) are used to improve circular dichroism, as they induce stronger interactions between the electric and magnetic fields. However, manipulating the wavefront with these structures remains challenging because they are commonly considered isotropic and lack a geometric phase response in linear optics. Here, we propose and experimentally demonstrate an approach to achieve simultaneous circular dichroism (with a maximum value of ∼0.62) and wavefront manipulation using a plasmonic metasurface made up of C3 Archimedes spiral nanostructures. The circular dichroism arises from the magnetic dipole-dipole resonance and strong interactions between adjacent meta-atoms. As a proof of concept, two metadevices are fabricated and characterized in the near-infrared regime. This configuration possesses the potential for future applications in photodetection, chiroptical spectroscopy, and the customization of linear and nonlinear optical responses.

3.
Opt Lett ; 49(5): 1189-1192, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426970

RESUMEN

In recent years, wide field-of-view imaging technology based on a metasurface has been widely applied. However, works on the reported sub-diffraction metalens with a wide field-of-view indicate that multiple structures are essential to effectively eliminate aberrations, which results in a heavy device thickness and weakens the advantage of an ultra-thin metasurface. To solve this problem, according to the super-oscillation theory and the translational symmetry of quadratic phase, as well as the principle of virtual aperture diaphragm based on wave vector filter, this Letter demonstrates a sub-diffraction metalens combined with a single quadratic metalens and a wave vector filter. Our design not only realizes the super-resolution effects of 0.74 to 0.75 times the diffraction limit in the wide field-of-view of nearly 180° for the first time to our knowledge but also compresses the device thickness to the subwavelength order in principle. The proposed ultra-thin sub-diffraction metalens with a wide field-of-view is expected to be applied in the fields of super-resolution fast scanning imaging, information detection, small target recognition, and so on.

4.
Adv Sci (Weinh) ; 11(17): e2308687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342615

RESUMEN

Metasurfaces, 2D arrays of nanostructures, have gained significant attention in recent years due to their ability to manipulate light at the subwavelength scale. Their diverse applications range from advanced optical devices to sensing and imaging technologies. However, the mass production of dielectric metasurfaces with tailored properties for visible light has remained a challenge. Therefore, the demand for efficient and cost-effective fabrication methods for metasurfaces has driven the continuing development of various techniques. In this research article, a high-throughput production method is presented for multifunctional dielectric metasurfaces in the visible light range using one-step high-index TiO2-polymer composite (TPC) printing, which is a variant of nanoprinting lithography (NIL) for the direct replication of patterned multifunctional dielectric metasurfaces using a TPC material as the printing ink. The batch fabrication of dielectric metasurfaces is demonstrated with controlled geometry and excellent optical response, enabling high-performance light-matter interactions for potential applications of visible meta-displays.

5.
Small ; 20(26): e2308661, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258607

RESUMEN

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2, 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

6.
Small ; 20(6): e2305706, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37788906

RESUMEN

Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m-2 . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.

7.
Opt Express ; 31(25): 42165-42175, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087596

RESUMEN

Free space optical (FSO) communication has gained widespread attention due to its advantages, including high confidentiality, high communication capacity, and no limitation of spectrum. One of the great challenges in FSO communication is the transmission performance degradation in atmospheric turbulence channel due to wavefront distortion and scintillation. Here, we proposed and experimentally demonstrated a 120 Gbit/s vector beam multiplexed coherent optical communication system with turbulence-resilient capacity. Four multiplexed vector beams, each carrying a 30 Gbit/s quadrature phase-shift keying signal, propagate through different turbulence conditions. The influence of turbulence channel on the vector beam impairments is experimentally investigated. Under the weaker turbulence conditions, the system bit error rates are below the forward error correction threshold of 3.8 × 10-3. In comparison with the Gaussian mode, the communication interruption probability of the vector beams system decreases from 36% to 12%-18% under stronger turbulence conditions.

8.
Opt Express ; 31(13): 21200-21211, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381225

RESUMEN

This paper proposes and demonstrates a flexible long-wave infrared snapshot multispectral imaging system consisting of a simple re-imaging system and a pixel-level spectral filter array. A six-band multispectral image in the spectral range of 8-12 µm with full width at half maximum of about 0.7 µm each band is acquired in the experiment. The pixel-level multispectral filter array is placed at the primary imaging plane of the re-imaging system instead of directly encapsulated on the detector chip, which diminishes the complexity of pixel-level chip packaging. Furthermore, the proposed method possesses the merit of flexible functions switching between multispectral imaging and intensity imaging by plugging and unplugging the pixel-level spectral filter array. Our approach could be viable for various practical long-wave infrared detection applications.

9.
Nanoscale ; 15(26): 11155-11162, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37338938

RESUMEN

Polaritons - material excitation coupled with light - are thought to hold the potential for the extreme control of light down to the atomic length scale because of their high field confinement and sub-wavelength scales. For practical applications, it is essential but still a formidable challenge to manipulate polaritons with high efficiency and a wide tunable range. These obstacles may be overcome by the topology of polaritons. In photonic systems composed of graphene/α-MoO3 heterostructures, the topology of the hybrid polariton characterized by the isofrequency curve can transform from open hyperbolas to closed ellipse-like curves, driven by the carrier concentrations of graphene. The electronic tunability of such topological polaritons offers a unique platform for two-dimensional energy transfer. Here, by introducing local gates to obtain a tunable spatial carrier density profile in the graphene/α-MoO3 heterostructure, the phase of the polariton is predicted to be efficiently tuned from 0 to 2π in situ. Remarkably, the reflectance and transmittance through the gap between local gates can also be modulated in situ from 0 to 1 with high efficiency, where the device length can be less than 100 nm. The modulation is achieved owing to the dramatic changes in the wave vector of polaritons near the topological transition point. The proposed structures not only have direct applications in two-dimensional optics such as total reflectors, phase (amplitude) modulators, and optical switches but also can serve as an important component for complex nano-optical devices.

10.
Opt Express ; 31(9): 14785-14795, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157335

RESUMEN

In this paper, we demonstrated a miniaturized diffractive/refractive hybrid system based on a diffractive optical element and three refractive lenses to achieve solar-blind ultraviolet imaging within a range of 240-280 nm. We experimentally demonstrate the optical system has both outstanding resolution and excellent imaging capability. The experiments demonstrate that the system could distinguish the smallest line pair with a width of 16.7 µm. The modulation transfer function (MTF) at the target maximum frequency (77 lines pair/mm) is great than 0.76. The strategy provides significant guidance for the mass production of solar-blind ultraviolet imaging systems towards miniaturization and lightweight.

11.
Nat Commun ; 14(1): 1946, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029133

RESUMEN

Optical encryption is a promising approach to protecting secret information owing to the advantages of low-power consumption, parallel, high-speed, and multi-dimensional processing capabilities. Nevertheless, conventional strategies generally suffer from bulky system volume, relatively low security level, redundant measurement, and/or requirement of digital decryption algorithms. Here, we propose a general optical security strategy dubbed meta-optics-empowered vector visual cryptography, which fully exploits the abundant degrees of freedom of light as well as the spatial dislocation as key parameters, significantly upgrading the security level. We also demonstrate a decryption meta-camera that can implement the reversal coding procedure for real-time imaging display of hidden information, avoiding redundant measurement and digital post-processing. Our strategy features the merits of a compact footprint, high security, and rapid decryption, which may open an avenue for optical information security and anti-counterfeiting.

12.
Opt Express ; 31(5): 8068-8080, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859924

RESUMEN

Phase-gradient metasurfaces are two-dimensional (2D) optical elements that can manipulate light by imposing local, space-variant phase changes on an incident electromagnetic wave. These metasurfaces hold the potential and the promise to revolutionize photonics by providing ultrathin alternatives for a wide range of common optical elements such as bulky refractive optics, waveplates, polarizers, and axicons. However, the fabrication of state-of-the-art metasurfaces typically requires some time-consuming, expensive, and possibly hazardous processing steps. To overcome these limitations on conventional metasurface fabrication, a facile methodology to produce phase-gradient metasurfaces through one-step UV-curable resin printing is developed by our research group. The method dramatically reduces the required processing time and cost, as well as eliminates safety hazards. As a proof-of-concept, the advantages of the method are clearly demonstrated via a rapid reproduction of high-performance metalenses based on the Pancharatnam-Berry phase gradient concept in the visible spectrum.

13.
Opt Lett ; 48(6): 1470-1473, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946955

RESUMEN

For the first time, to the best of our knowledge, we experimentally demonstrate a high-speed free-space secure optical communication system based on all-optical chaos modulation. The effect of atmospheric turbulence on optical chaos synchronization is experimentally investigated via a hot air convection atmospheric turbulence simulator. It is shown that, even under moderately strong turbulent conditions, high-quality chaos synchronization could be obtained by increasing the transmission power. Moreover, a secure encryption transmission experiment using a high bias current induced chaotic carrier for 8-Gbit/s on-off-keying data over a ∼10-m free-space optical link is successfully demonstrated, with a bit-error rate below the FEC threshold of 3.8 × 10-3. This work favorably shows the feasibility of optical chaotic encryption for the free-space optical transmission system.

14.
Adv Sci (Weinh) ; 10(10): e2206997, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36748286

RESUMEN

Graphene is a promising candidate for the next-generation infrared array image sensors at room temperature due to its high mobility, tunable energy band, wide band absorption, and compatibility with complementary metal oxide semiconductor process. However, it is difficult to simultaneously obtain ultrafast response time and ultrahigh responsivity, which limits the further improvement of graphene photoconductive devices. Here, a novel graphene/C60 /bismuth telluride/C60 /graphene vertical heterojunction phototransistor is proposed. The response spectral range covers 400-1800 nm; the responsivity peak is 106 A W-1 ; and the peak detection rate and peak response speed reach 1014 Jones and 250 µs, respectively. In addition, the regulation of positive and negative photocurrents at a gate voltage is characterized and the ionization process in impurities of the designed phototransistor at a low temperature is analyzed. Tunable bidirectional response provides a new degree of freedom for phototransistors' signal resolution. The analysis of the dynamic change process of impurity energy level is conducted to improve the device's performance. From the perspective of manufacturing process, the ultrathin phototransistor (20-30 nm) is compatible with functional metasurface to realize wavelength or polarization selection, making it possible to achieve large-scale production of integrated spectrometer or polarization imaging sensor by nanoimprinting process.

15.
Opt Express ; 30(20): 36949-36959, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258614

RESUMEN

Beam scanning based on metasurfaces is widely discussed in recent years owing to its high integration, lightweight, and low cost. However, most of the reported beam scanning metasurfaces operate in either transmission or reflection mode. Here, we propose a full-space beam scanning metasurface based on transmission reflection switchable meta-atom and the quadratic phase distribution. As a validation, a metasurface array with 400 units (20 × 20) was experimentally demonstrated. Beam scanning of ± 35 ° was achieved in both transmission mode and reflection mode. A larger scanning angle (± 45 °) was further verified simulatively with a 900-units (30 × 30) array. The method provides an avenue for expanding the space of electromagnetic wave manipulation and may have great potential in wireless communication and radar detection.

16.
Opt Express ; 30(10): 17259-17269, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221552

RESUMEN

Visible-infrared compatible camouflage is significant to enhance the equipment survivability through counteracting the modern detecting and surveillance systems. However, there are still great challenges in simultaneously achieving multispectral camouflage with high transmittance in visible, low emissivity in the atmospheric windows and high emissivity in the non-atmospheric window, which can be attributed to the mutual influence and restriction within these characteristics. Here, we proposed an optically transparent infrared selective emitter (OTISE) composed of three Ag-ZnO-Ag disk sub-cells with anti-reflection layers, which can synchronously improve the visible transmittance and widen absorption bandwidth in the non-atmospheric window by enhancing and merging resonance response of multi-resonators. Test results reveal that low emissivity in infrared atmospheric windows, high emissivity in the 5-8 µm non-atmospheric window and high optical transparency have been obtained. In addition, the radiative flux of OTISE in 3-5 µm and 8-14 µm are respectively 34.2% and 9.3% of that of blackbody and the energy dissipation of OTISE is 117% of that of chromium film. Meanwhile, it keeps good optical transparency due to the ultrathin Ag film. This work provides a novel strategy to design the optically transparent selective emissive materials, implying a promising application potential in visible and infrared camouflage technology.

17.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234521

RESUMEN

Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of micro/nano-technology. The increase in design space makes it difficult to realize high-performance device design based on traditional parameter sweeping or heuristic design, especially in the optimal design of reconfigurable PIC devices. Combining the mode coupling theory and adjoint calculation method, we proposed a design method for a switchable mode converter. The device could realize the transmission of TE0 mode and the conversion from TE0 to TE1 mode with a footprint of 0.9 × 7.5 µm2 based on the phase change materials (PCMs). We also found that the mode purity could reach 78.2% in both states at the working wavelength of 1.55 µm. The designed method will provide a new impetus for programmable photonic integrated devices and find broad application prospects in communication, optical neural networks, and sensing.

18.
Nanoscale Adv ; 4(8): 2011-2017, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36133413

RESUMEN

Lithography is one of the most key technologies for integrated circuit (IC) manufacturing and micro/nano-functional device fabrication, while the imaging objective lens plays one important role. Due to the curved surface of the conventional objective lens, the imaging field of view is limited and the objective lens system is complex. In this paper, a planar objective lens based on the optical negative refraction principle is demonstrated for achieving optical axis free and long depth of focus imaging nanolithography. Through employing a hyperbolic metamaterial composed of silver/titanium dioxide multilayers, plasmonic waveguide modes could be generated in multilayers, which results in optical negative refraction and then flat imaging at ultraviolet wavelength. The corresponding imaging characteristics are investigated in simulation and experiment. At the I-line wavelength of 365 nm, the highest imaging resolution of 165 nm could be realized in the 100 nm photoresist layer under the working gap of 100 nm between the objective lens and substrate. Moreover, this planar objective lens has good ability for cross-scale and two-dimensional imaging lithography, and is similar to a conventional projection objective lens. It is believed that this kind of planar objective lens will provide a promising avenue for low-cost nanofabrication scenarios in the near future.

19.
J Phys Condens Matter ; 34(38)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35820414

RESUMEN

Catenary optics is an emerging direction of subwavelength optics, which is indispensable in describing the electric fields and dispersion property of coupled metallic subwavelength structures, and designing broadband high-efficiency geometric-phase metasurfaces. It involves catenary optical fields and catenary structures, in which both ordinary and equal-length catenary functions play important roles. In recent years, catenary optics has realized a variety of exotic phenomena and optical applications, including broadband photonic spin-Hall effect, super-resolution lithography, broadband absorbers, and extreme-angle imaging. Here, we discuss developments of catenary optics, including a brief history, physical concept and properties, applications, and future perspectives.

20.
Opt Express ; 30(7): 12069-12079, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473136

RESUMEN

We propose a dual-band achromatic focusing metasurface based on polarization multiplexing and dispersion engineering. An anisotropic resonant phase meta-atom is designed to realize independent nonlinear phase manipulation along the orthogonal directions. Achromatic focusing metasurface and broadband reflectarray antenna are further constructed in the microwave region with a computer-assisted particle swarm optimization algorithm. The standard deviation of focus offset at 11-16 GHz (for x-polarization) and 18-24 GHz (for y-polarization) are compressed to 19.83% and 16.60% of the dispersive metasurface, respectively. The radiation gains of the reflectarray antenna increase by an average of 19.49 dB and 15.08 dB in the broadband region compared with the bare standard rectangle waveguides. Furthermore, such an achromatic metasurface can be utilized to realize different functions with polarization selectivity and applied to other frequency ranges, which holds great promise in integrated optics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...