Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579712

RESUMEN

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Asunto(s)
Células Epiteliales Alveolares , Linaje de la Célula , Pulmón , Regeneración , Células Madre , Animales , Ratones , Células Madre/metabolismo , Células Madre/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Pulmón/citología , Pulmón/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Lesión Pulmonar/patología , Diferenciación Celular , Transducción de Señal , Ratones Endogámicos C57BL
2.
NPJ Regen Med ; 8(1): 41, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537178

RESUMEN

A genetic system, ProTracer, has been recently developed to record cell proliferation in vivo. However, the ProTracer is initiated by an infrequently used recombinase Dre, which limits its broad application for functional studies employing floxed gene alleles. Here we generated Cre-activated functional ProTracer (fProTracer) mice, which enable simultaneous recording of cell proliferation and tissue-specific gene deletion, facilitating broad functional analysis of cell proliferation by any Cre driver.

3.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447659

RESUMEN

Erasure-code-based storage systems suffer from problems such as long repair time and low I/O performance, resulting in high repair costs. For many years, researchers have focused on reducing the cost of repairing erasure-code-based storage systems. In this study, we discuss the demerits of node selecting, data transferring and data repair in erasure-code-based storage systems. Based on the network topology and node structure, we propose SDNC-Repair, a cooperative data repair strategy based on erasure code for SDS (Software Defined Storage), and describe its framework. Then, we propose a data source selection algorithm that senses the available network bandwidth between nodes and a data flow scheduling algorithm in SDNC-Repair. Additionally, we propose a data repair method based on node collaboration and data aggregation. Experiments illustrate that the proposed method has better repair performance under different data granularities. Compared to the conventional repair method, although the SDNC-Repair is more constrained by the cross-rack bandwidth, it improves system throughput effectively and significantly reduces data repair time in scenarios where multiple nodes fail and bandwidth is limited.


Asunto(s)
Algoritmos , Programas Informáticos
4.
Dev Cell ; 58(16): 1502-1512.e3, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37348503

RESUMEN

Cardiac resident macrophages play vital roles in heart development, homeostasis, repair, and regeneration. Recent studies documented the hematopoietic potential of cardiac endothelium that supports the generation of cardiac macrophages and peripheral blood cells in mice. However, the conclusion was not strongly supported by previous genetic tracing studies, given the non-specific nature of conventional Cre-loxP tracing tools. Here, we develop an intercellular genetic labeling system that can permanently trace heart-specific endothelial cells based on cell-cell interaction in mice. Results from cell-cell contact-mediated genetic fate mapping demonstrate that cardiac endothelial cells do not exhibit hemogenic potential and do not contribute to cardiac macrophages or other circulating blood cells. This Matters Arising paper is in response to Shigeta et al. (2019), published in Developmental Cell. See also the response by Liu and Nakano (2023), published in this issue.


Asunto(s)
Células Endoteliales , Corazón , Ratones , Animales , Linaje de la Célula/genética , Diferenciación Celular , Endotelio
7.
Nat Genet ; 55(4): 651-664, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914834

RESUMEN

Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/ß-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.


Asunto(s)
Regeneración Hepática , Hígado , Proliferación Celular/genética , Hepatocitos , Células Epiteliales , Células Madre , Diferenciación Celular/genética
8.
Nat Genet ; 55(4): 665-678, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36959363

RESUMEN

After severe heart injury, fibroblasts are activated and proliferate excessively to form scarring, leading to decreased cardiac function and eventually heart failure. It is unknown, however, whether cardiac fibroblasts are heterogeneous with respect to their degree of activation, proliferation and function during cardiac fibrosis. Here, using dual recombinase-mediated genetic lineage tracing, we find that endocardium-derived fibroblasts preferentially proliferate and expand in response to pressure overload. Fibroblast-specific proliferation tracing revealed highly regional expansion of activated fibroblasts after injury, whose pattern mirrors that of endocardium-derived fibroblast distribution in the heart. Specific ablation of endocardium-derived fibroblasts alleviates cardiac fibrosis and reduces the decline of heart function after pressure overload injury. Mechanistically, Wnt signaling promotes activation and expansion of endocardium-derived fibroblasts during cardiac remodeling. Our study identifies endocardium-derived fibroblasts as a key fibroblast subpopulation accounting for severe cardiac fibrosis after pressure overload injury and as a potential therapeutic target against cardiac fibrosis.


Asunto(s)
Cardiopatías , Fibroblastos/metabolismo , Cardiopatías/genética , Cardiopatías/patología , Fibrosis/genética , Animales , Ratones , Envejecimiento , Proliferación Celular , Vía de Señalización Wnt , Ratones Transgénicos
10.
Cell Discov ; 9(1): 1, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596774

RESUMEN

Unraveling cell fate plasticity during tissue homeostasis and repair can reveal actionable insights for stem cell biology and regenerative medicine. In the pancreas, it remains controversial whether lineage transdifferentiation among the exocrine cells occur under pathophysiological conditions. Here, to address this question, we used a dual recombinase-mediated genetic system that enables simultaneous tracing of pancreatic acinar and ductal cells using two distinct genetic reporters, avoiding the "ectopic" labeling by Cre-loxP recombination system. We found that acinar-to-ductal transdifferentiation occurs after pancreatic duct ligation or during caerulein-induced pancreatitis, but not during homeostasis or after partial pancreatectomy. On the other hand, pancreatic ductal cells contribute to new acinar cells after significant acinar cell loss. By genetic tracing of cell proliferation, we also quantify the cell proliferation dynamics and deduce the turnover rate of pancreatic exocrine lineages during homeostasis. Together, these results suggest that the lineage transdifferentiation happens between acinar cells and ductal cells in the pancreatic exocrine glands under specific conditions.

11.
Biophys Rep ; 9(6): 309-324, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38524699

RESUMEN

The liver consists predominantly of hepatocytes and biliary epithelial cells (BECs), which serve distinct physiological functions. Although hepatocytes primarily replenish their own population during homeostasis and injury repair, recent findings have suggested that BECs can transdifferentiate into hepatocytes when hepatocyte-mediated liver regeneration is impaired. However, the cellular and molecular mechanisms governing this BEC-to-hepatocyte conversion remain poorly understood largely because of the inefficiency of existing methods for inducing lineage conversion. Therefore, this study introduces a novel mouse model engineered by the Zhou's lab, where hepatocyte senescence is induced by the deletion of the fumarylacetoacetate (Fah) gene. This model facilitates the efficient conversion of BECs to hepatocytes and allows for the simultaneous lineage tracing of BECs; consequently, a transitional liver progenitor cell population can be identified during lineage conversion. This study also outlines the technical procedures for utilizing this model to determine the underlying cellular and molecular mechanisms of BEC-to-hepatocyte conversion and provides new insights into liver regeneration and its underlying molecular mechanism.

12.
Science ; 378(6623): eabo5503, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454848

RESUMEN

Monitoring of cell-cell communication in multicellular organisms is fundamental to understanding diverse biological processes such as embryogenesis and tumorigenesis. To track cell-cell contacts in vivo, we developed an intercellular genetic technology to monitor cell-cell contact and to trace cell contact histories by permanently marking contacts between cells. In mice, we engineered an artificial Notch ligand into one cell (the sender cell) and an artificial receptor into another cell (the receiver cell). Contact between the sender and receiver cells triggered a synthetic Notch signaling that activated downstream transcriptional programs in the receiver cell, thereby transiently or permanently labeling it. In vivo cell-cell contact was observed during development, tissue homeostasis, and tumor growth. This technology may be useful for studying dynamic in vivo cell-cell contacts and cell fate plasticity.


Asunto(s)
Comunicación Celular , Perfilación de la Expresión Génica , Receptores Notch , Animales , Ratones , Carcinogénesis , Plasticidad de la Célula , Transducción de Señal , Receptores Notch/genética , Perfilación de la Expresión Génica/métodos
14.
Am J Cancer Res ; 12(4): 1502-1510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530280

RESUMEN

In order to avoid the problems of long exposure time and high incidence of photosensitivity by intravenous injection of photosensitizer, our study explore the safety, efficacy, and possible mechanisms of photodynamic therapy (PDT) by intrathoracic administration of hematoporphyrin injection in the treatment of disseminated pleural malignancies of Lewis lung carcinoma in mice to provide a theoretical basis for thoracic PDT in the clinic. Hematoporphyrin was administered into the thoracic cavity of tumor-bearing mice, and the concentrations of hematoporphyrin in normal and tumor pleural tissues were detected by high-performance liquid chromatography. The tumor-bearing mice were randomly divided into four groups: model control, pure laser irradiation, PDT low-dose, and PDT high-dose groups. Hematoxylin and eosin (H&E) staining was used to observe the histological changes in normal pleural tissue. H&E and DNA in situ nick end-labeling staining were used to detect necrosis and apoptosis in the tumor tissues. The tumor volume in each group from high to low was as follows: model control group > pure laser irradiation group > PDT low-dose group > PDT high-dose group. Inflammatory cells infiltrated the normal pleural tissue of the PDT group. Necrosis was observed to different extents in the tumor tissues of the PDT group. The apoptosis index of each group from high to low was as follows: PDT high-dose group > PDT low-dose group > pure laser irradiation group > model control group. The differences were statistically significant (P<0.05). Hematoporphyrin selectively accumulated in tumor pleural tissues. PDT with intrathoracic administration of hematoporphyrin injection could inhibit the thoracic implant tumors in mice by inducing necrosis and apoptosis.

15.
J Biol Chem ; 298(6): 101965, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461809

RESUMEN

Genetic technology using site-specific recombinases, such as the Cre-loxP system, has been widely employed for labeling specific cell populations and for studying their functions in vivo. To enhance the precision of cell lineage tracing and functional study, a similar site-specific recombinase system termed Dre-rox has been recently used in combination with Cre-loxP. To enable more specific cell lineage tracing and ablation through dual recombinase activity, we generated two mouse lines that render Dre- or Dre+Cre-mediated recombination to excise a stop codon sequence that prevents the expression of diphtheria toxin receptor (DTR) knocked into the ubiquitously expressed and safe Rosa26 locus. Using different Dre- and Cre-expressing mouse lines, we showed that the surrogate gene reporters tdTomato and DTR were simultaneously expressed in target cells and in their descendants, and we observed efficient ablation of tdTomato+ cells after diphtheria toxin administration. These mouse lines were used to simultaneously trace and deplete the target cells of interest through the inducible expression of a reporter and DTR using dual Cre and Dre recombinases, allowing a more precise and efficient study of the role of specific cell subsets within a heterogeneous population in pathophysiological conditions in vivo.


Asunto(s)
Linaje de la Célula , Integrasas , Recombinasas , Animales , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Recombinasas/genética , Recombinasas/metabolismo , Recombinación Genética
16.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35482005

RESUMEN

Tissue-resident macrophages play essential functions in the maintenance of tissue homeostasis and repair. Recently, the endocardium has been reported as a de novo hemogenic site for the contribution of hematopoietic cells, including cardiac macrophages, during embryogenesis. These observations challenge the current consensus that hematopoiesis originates from the hemogenic endothelium within the yolk sac and dorsal aorta. Whether the developing endocardium has such a hemogenic potential requires further investigation. Here, we generated new genetic tools to trace endocardial cells and reassessed their potential contribution to hematopoietic cells in the developing heart. Fate-mapping analyses revealed that the endocardium contributed minimally to cardiac macrophages and circulating blood cells. Instead, cardiac macrophages were mainly derived from the endothelium during primitive/transient definitive (yolk sac) and definitive (dorsal aorta) hematopoiesis. Our findings refute the concept of endocardial hematopoiesis, suggesting that the developing endocardium gives rise minimally to hematopoietic cells, including cardiac macrophages.


Asunto(s)
Linaje de la Célula , Corazón , Macrófagos , Miocardio , Animales , Aorta/citología , Endocardio/citología , Corazón/embriología , Hematopoyesis/genética , Miocardio/citología , Saco Vitelino/citología
17.
Cell Regen ; 11(1): 12, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35320448
19.
Cell Regen ; 11(1): 2, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989894

RESUMEN

The liver has remarkable capability to regenerate, employing mechanism to ensure the stable liver-to-bodyweight ratio for body homeostasis. The source of this regenerative capacity has received great attention over the past decade yet still remained controversial currently. Deciphering the sources for hepatocytes provides the basis for understanding tissue regeneration and repair, and also illustrates new potential therapeutic targets for treating liver diseases. In this review, we describe recent advances in genetic lineage tracing studies over liver stem cells, hepatocyte proliferation, and cell lineage conversions or cellular reprogramming. This review will also evaluate the technical strengths and limitations of methods used for studies on hepatocyte generation and cell fate plasticity in liver homeostasis, repair and regeneration.

20.
Nat Commun ; 12(1): 5784, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599161

RESUMEN

Cardiac regeneration involves the generation of new cardiomyocytes from cycling cardiomyocytes. Understanding cell-cycle activity of pre-existing cardiomyocytes provides valuable information to heart repair and regeneration. However, the anatomical locations and in situ dynamics of cycling cardiomyocytes remain unclear. Here we develop a genetic approach for a temporally seamless recording of cardiomyocyte-specific cell-cycle activity in vivo. We find that the majority of cycling cardiomyocytes are positioned in the subendocardial muscle of the left ventricle, especially in the papillary muscles. Clonal analysis revealed that a subset of cycling cardiomyocytes have undergone cell division. Myocardial infarction and cardiac pressure overload induce regional patterns of cycling cardiomyocytes. Mechanistically, cardiomyocyte cell cycle activity requires the Hippo pathway effector YAP. These genetic fate-mapping studies advance our basic understanding of cardiomyocyte cell cycle activity and generation in cardiac homeostasis, repair, and regeneration.


Asunto(s)
Miocitos Cardíacos/citología , Animales , Southern Blotting , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Femenino , Citometría de Flujo , Corazón/fisiología , Masculino , Ratones , Microscopía Fluorescente , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA